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Abstract: The carrying capacity of the environment for a population is one of the key concepts in 
ecology and it is incorporated in the growth term of reaction-diffusion equations describing 
populations in space. Analysis of reaction-diffusion models of populations in heterogeneous space 
have shown that, when the maximum growth rate and carrying capacity in a logistic growth 
function vary in space, conditions exist for which the total population size at equilibrium (i) exceeds 
the total population that which would occur in the absence of diffusion and (ii) exceeds that which 
would occur if the system were homogeneous and the total carrying capacity, computed as the 
integral over the local carrying capacities, was the same in the heterogeneous and homogeneous 
cases. We review here work over the past few years that has explained these apparently counter-
intuitive results in terms of the way input of energy or another limiting resource (e.g., a nutrient) 
varies across the system. We report on both mathematical analysis and laboratory experiments 
confirming that total population size in a heterogeneous system with diffusion can exceed that in 
the system without diffusion. We further report, however, that when the resource of the population 
in question is explicitly modeled as a coupled variable, as in a reaction-diffusion chemostat model 
rather than a model with logistic growth, the total population in the heterogeneous system with 
diffusion cannot exceed the total population size in the corresponding homogeneous system in 
which the total carrying capacities are the same. 

Keywords: carrying capacity; spatial heterogeneity; Pearl-Verhulst logistic model; reaction-
diffusion model; energy constraints; total realized asymptotic population abundance; chemostat 
model 
 

1. Introduction 

Partial differential equations have long been used in spatial ecology, usually in the form of 
reaction-diffusion equations, to describe such phenomena as spatial pattern formation (e.g., 
references [1–3]), the spread of populations in space (e.g., references [4,5]), and the effects of spatial 
heterogeneity on populations (e.g., reference [6]). 

The last of these mentioned, the effects of spatial heterogeneity on populations, has relevance to 
the general question of what population size can be supported on a landscape or region that is 
heterogeneous in habitat quality for various species; i.e., resource availability. The question arises in 
relation to a population that is being exploited for economic needs or that is an object of conservation. 
The term ‘carrying capacity’ is usually used to mean the maximum population size that could be 
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sustained in a given habitat (e.g., references [7,8]) The term was originally used in livestock 
management to describe the number of domestic animals that can be sustained in a given managed 
area, but was extended by ecologists in the 1930s to describe the number of wild animals that could 
be sustained in a natural area [9], such as predators in a nature reserve [10]. Further, carrying capacity 
is used to describe the sustained ecological services that can be provided for human and ecological 
populations by terrestrial or aquatic ecosystems [11–14]. Therefore, carrying capacity now covers a 
range of uses. Because of its importance, the effects of various factors, such as climate change [15], 
environmental stressors [16], and human impact [17] on carrying capacity in various contexts have 
been studied. 

Carrying capacity has usually been assumed to reflect the amount of resources available to the 
population. With this interpretation, carrying capacity can be formulated in a mathematical way, by 
equating carrying capacity with the constant K in the Pearl-Verhulst version of the logistic equation 
[18]: 

𝑑𝑢

𝑑𝑡 
 =  𝑟 1 −

𝑢

𝐾
𝑢 (1) 

where u is population size or abundance, r is the maximum grow rate of the population, and t is time. 
This formulation focuses the problem on measuring K. However, such measurement is often not easy 
when dealing with populations in the wild, which are affected by many environmental factors, not 
just resources, and are observed to fluctuate strongly through time. Therefore, ways to include time 
dependence have been developed in various directions [19,20]. 

Despite some vagueness in their meaning and measurement, both the Pearl-Verhulst logistic 
equation and carrying capacity have remained major features in population ecology textbooks and 
theoretical models. Studying equations such as (1), even in the absence of precise data, can give 
insights into ecological questions, such as how the population size might respond when subject to 
perturbations. The need to extend the logistic population model to space and to include capacity for 
organism movement was realized [21,22]. To extend this model to populations over a spatial area 
such as a landscape or region partial differential equations are useful tools. If the spatial movement 
of the population can be approximated as diffusion, then the logistic equation may look like: 

𝑑𝑢

𝑑𝑡 
 =  𝐷∆𝑢 +  𝑟 1 −

𝑢

𝐾
𝑢 (2) 

where ∆𝑢 is the Laplacian and D is the diffusion coefficient, where now u is a function of both time 
and space, x, defined on region Ω. If the environmental conditions of the landscape or region of 
interest are homogeneous, then the parameters r and K will be constants. If, however, that is not true, 
then r(x) and K(x), can be defined as the local growth rates and carrying capacities at locations x. 

Although carrying capacity has largely been used with the assumption of a relatively uniform 
or homogeneous environment, it might at first seem that the extension of carrying capacity to the 
whole spatial region would be a fairly straightforward adding up of the local carrying capacities, 
through integrating K(x) over region Ω; i.e., ∫ 𝐾(𝑥). However, extending the logistic equation to 
space leads to results that show that such an extension is not a simple matter. Using a simplified form 
of Equation (2), in which maximum growth rate and carrying capacity are combined into one spatially 
varying parameter, g(x), Lou [23] (see also references [24,25]) solved for the total population size of a 
population diffusing in a heterogeneous spatial region described by the equation: 

𝑑𝑢

𝑑𝑡 
 =  𝐷∆𝑢 + [𝑔(𝑥) − 𝑢]𝑢 (3) 

where g(x) varies with the spatial distance x but is constant temporally. The population diffuses at a 
constant rate D, with Neumann (no-flux) boundary conditions on u. Lou (2006) [23] showed, dividing 
the terms of the right-hand side by u and integrating over space Ω, that the following equation holds 
at equilibrium: 

𝐷 ∫
⌊∇ ⌋

+ ∫ [𝑔(𝑥) − 𝑢(𝑥)]𝑑𝑥 = 0. (4) 
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Because the first term is necessarily positive; i.e., 

𝐷
⌊∇𝑢⌋

𝑢
> 0  (5) 

it implies that 

∫ [𝑔(𝑥) − 𝑢(𝑥)]𝑑𝑥 <  0. (6) 

The total population size can be defined as ∫ 𝑢(𝑥). We will follow reference [26] to use the term 

‘total realized asymptotic population abundance′ for ∫ 𝑢(𝑥). (TRAPA). It is clear from (6) that: 

TRAPA ≡ ∫ 𝑢(𝑥) > ∫ 𝑔(𝑥) (7) 

that is, it is greater than the integral over all local values of the carrying capacity, g(x). 
The results of reference [23] are for a special case of the logistic equation in which one spatially 

varying parameter, g(x), replaces both r(x) and K(x) of the Pearl-Verhulst growth function. To 
examine the separate effects of growth and carrying capacity, DeAngelis, et al. [27] extended the 
analysis to Equation (2). The equation: 

𝜕𝑢

𝜕𝑡
 =  𝐷∆𝑢 + 𝑟(𝑥) 1 −

𝑢

𝐾(𝑥)
𝑢 (8) 

is difficult to analyze for all values of diffusion, but can be evaluated in the limits D → 0 and D → ∞. 
When the diffusion rate is small, it was established in [27,28] that it is possible for ∫ 𝑢(𝑥) > ∫ 𝐾(𝑥), 
although this becomes an equality in the limit as D→ 0. For the case D approaches infinity (i.e., 
diffusion rate becomes much larger than growth rate), the authors show that ∫ 𝑢(𝑥) > ∫ 𝐾(𝑥) can 
hold, if there is a positive correlation between K(x) and r(x). Specifically, they show that for 𝐷 →  ∞, 
u approaches the asymptotic value ud, where: 

𝑢  =  
∫ ( )

∫
( )

( )

. (9) 

From (9) it can be shown that, in the case that r(x)/K(x) is strictly decreasing with x: 

𝑢  <  𝐾  ≡  
⌊ ⌋

∫ 𝐾(𝑥). (10) 

In the case that r(x)/K(x) is strictly increasing with x: 

𝑢  >  𝐾. (11) 

Therefore, the situation in which TRAPA exceeds the spatial integral over K(x) is only a special 
case of a positive correlation of r(x) and K(x), and the reverse is also possible. The result of reference 
[23] in Equation (3) is due to the fact that g(x) is both the maximum growth rate and carrying capacity, 
which results in these being positively correlated. 

The question can be asked: What is the reason for the puzzling result that TRAPA can exceed 
the integral of K(x) over space? A qualitative interpretation of both inequalities (7) and (11) is that 
diffusion of individuals away from areas of locally high growth rate, r(x), and high local carrying 
capacity, K(x), keeps the population levels in those areas below K(x), so that new production exceeds 
losses at steady state in those areas. At the same time, diffusion from these areas of higher production 
to areas of lower r(x) and K(x) allows population levels in those low production areas to exceed the 
local K(x) in those areas. Sometimes it causes the total population over all space to exceed that which 
would occur in a homogeneous space with the same total carrying capacity. But this situation is 
limited to positive correlation between r(x) and K(x). In reality, the parameters r(x) and K(x) may not 
necessarily be positively correlated, so the increase in TRAPA with diffusion in heterogeneous space 
is not a general phenomenon, although we will see later that a positive correlation is likely. 

2. Analogy and Insight from Spatially Discretized Model 
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The puzzling effects shown by the reaction-diffusion equation for population growth and 
diffusion in heterogeneous space can perhaps be better understood by referring to historically earlier 
analysis of a simplified system of a population diffusing between two different discrete patches with 
different values of r and K. As above, assume that growth is described by the Pearl-Verhulst logistic 
equation, and that symmetric transfer rates, D, thus random or diffusive movement, are assumed to 
exist between the patches. The equations for the two patches then have the form: 

𝑑𝑈

𝑑𝑡
 =  𝑟 1 −

𝑈

𝐾
𝑈 − 𝐷𝑈 + 𝐷𝑈  (12a) 

𝑑𝑈

𝑑𝑡
 =  𝑟 1 −

𝑈

𝐾
𝑈 − 𝐷𝑈 + 𝐷𝑈  (12b) 

where ri is the maximum growth rate and Ki is henceforth defined as the local carrying capacity on 
patch i. It can be shown that for D → ∞; that is, when the movement rates between the compartments 
are large compared to population growth rates, so that perfect mixing of the population between the 
patches occurs, the following expression for population size holds at equilibrium: 

𝑇𝑅𝐴𝑃𝐴 =  𝑈∗ + 𝑈∗  =  𝐾 + 𝐾 + (𝐾 − 𝐾 ) , (13) 

This expression was found by reference [29], and corrected for typos by reference [30] and 
reference [26]. From Equation (13) it follows that, if K1 > K2 and r1/K1 > r2/K2, the total realized 
asymptotic population abundance at equilibrium (TRAPA) exceeds the sum of the local carrying 
capacities of the two patches; that is, 𝑈∗ + 𝑈∗ > 𝐾 + 𝐾 . These conditions on the values of ri and Ki 
are the discrete space version of the positive correlation between r(x) and K(x). This result was 
extended to n patches by Zhang et al. [31], where it was shown that this inequality applied for all D 
> 0. In addition, in reference [31], experimental manipulations simulating diffusion of a floating 
aquatic plant, duckweed, among patches lent support to the theoretical results. 

Equation (13) also implies that in the heterogeneous case, i.e., 𝐾 ≠  𝐾 , the total equilibrium 
population size with diffusion, 𝑈∗ + 𝑈∗ (𝑇𝑅𝐴𝑃𝐴), for K1 > K2 and r1/K1 > r2/K2, with D → ∞, exceeds 
the total populations on patches for the case in which the carrying capacities are homogeneous, which 
occurs where 𝐾  =  𝐾  =  (𝐾 +  𝐾 )/2. This result also applies to other forms of the logistic equation 
beyond the Pearl-Verhulst form. When the growth terms are replaced by the original Verhulst form: 

𝑑𝑈

𝑑𝑡
 =  𝑟 𝑈  − 𝛼 𝑈  −  𝐷𝑈  +  𝐷𝑈  (14a) 

𝑑𝑈

𝑑𝑡
 =  𝑟 𝑈  −  𝛼 𝑈  −  𝐷𝑈  +  𝐷𝑈   

(154
b) 

a variation on (13): 

𝑈∗ + 𝑈∗  =  
𝑟

𝛼
+

𝑟

𝛼
+ (𝛼 − 𝛼 )

1

𝛼 𝛼

𝑟 𝛼 − 𝑟 𝛼

𝑟 𝛼 + 𝑟 𝛼
 (15) 

can be derived, where again the sum of the equilibrium populations, 𝑈∗ + 𝑈∗, can exceed the sum of 
the individual carrying capacities, +  [28]. 

The result that TRAPA for a landscape in which the total carrying capacity is heterogeneous 
(local carrying capacities K1 plus K2 in a two-patch system) is greater than that of the homogeneous 
landscape (½ (K1 + K2) in each patch) when K1 > K2 and r1/K1 > r2/K2, has a simple explanation. Consider 
the two-patch system. The total input of energy or limiting resources in the heterogeneous case is r1K1 
+ r2K2, while the the equivalent in the homogeneous case is [r1(K1 + K2)/2 + r2(K1 + K2)/2]. These are not 
the same, so the total population sizes supported should also not be the same. It is the input of limiting 
energy (or other limiting resource) that is fundamental in nature. Carrying capacity is simply a 
resultant quantity. Therefore, there is a hidden assumption, when one is simply varying the local 
carrying capacities, of changing the total energy (or other limiting resource) input. These 
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considerations apply not only to the two-patch system, but to all spatial systems with a potentially 
heterogeneous growth rate and carrying capacity. 

To see this, consider the Pearl-Verhulst equation: 

𝑑𝑈

𝑑𝑡
 =  𝑟 1 −

𝑈

𝐾
 𝑈  (16) 

where Ui is in terms of energy or, alternatively, a limiting resource such as a nutrient. At steady state 
equilibrium, 𝑈∗  =  𝐾 , there is an influx of energy into the population, 𝑟 𝑈∗  =  𝑟 𝐾 , producing births 
and growth of individuals per unit time, and a loss flux of energy − 𝑟 𝑈∗ 𝐾⁄  =  −𝑟 𝐾 , due to 
metabolic maintenance and mortality resulting from interference with other members of the 
population [20,32]. Thus, energy through-flow maintains the population. Therefore, when comparing 
systems with different values of ri and Ki in the patch system, or r(x) and K(x) in the continuous 
system, it is also necessary to consider if the total energy (or other limiting resource) input is the same 
in the two systems being compared. 

It can be shown that the apparent paradox of greater TRAPA for cases of a heterogeneous region, 
with or without diffusion, versus TRAPA in the homogeneous case with the same summed local 
carrying capacities, arises in cases in which greater energy influx has implicitly been assumed for the 
heterogeneous case. This can be examined mathematically. To show that is the case, we follow 
reference [33] to consider the Pearl-Verhulst equations with the energy input requirement for the 
population implemented. Energetic (or other limiting resource) requirements on the population 
growth will be shown to explain the paradoxical behavior for D → ∞. 

For the Pearl-Verhulst model for the two-patch system, we have: 

𝑇𝑅𝐴𝑃𝐴   =   
𝐾 +  𝐾

2
+  

𝐾 + 𝐾

2
 =   𝐾 +  𝐾  (17a) 

𝑇𝑅𝐴𝑃𝐴 ,    =   𝐾 +  𝐾  (17b) 

𝑇𝑅𝐴𝑃𝐴 ,  =   𝐾 + 𝐾 + (𝐾 − 𝐾 ) . (17c) 

This implies that, for K1 > K2 and r1/K1 > r2/K2, the relationships 

𝑇𝑅𝐴𝑃𝐴 ,  ≥ 𝑇𝑅𝐴𝑃𝐴 ,   =  𝑇𝑅𝐴𝑃𝐴  (18) 

hold, where K1 + K2 has the same value for each of these three cases and the values of r1 and r2 are also 
the same in all cases. The values of all of the TRAPAs are shown as functions of r1 in Figure 1 for 
comparison. We can also calculate the influx of energy (or other limiting resource) that is needed by 
each of the TRAPAs above to be maintained at those levels. We call these ‘ENERGY TRAPAs’: 

𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴  =  𝑟
𝐾 + 𝐾

2
+  𝑟

𝐾 +  𝐾

2
 =  

1

2
(𝑟 + 𝑟 )(𝐾 + 𝐾 ) (19a) 

𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,   =  𝑟 𝐾 +  𝑟 𝐾  (19b) 

𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,  

=  
1

2
(𝑟 + 𝑟 ) 𝐾 + 𝐾 + (𝐾 − 𝐾 ) 

𝑟 𝐾 − 𝑟 𝐾

𝑟 𝐾 + 𝑟 𝐾
 (19c) 

Authors [33] demonstrate that, for the following set of inequalities, K1 > K2 and r1/K1 > r2/K2: 
𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,  ≥ 𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,  

≥ 𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴  . 
(20) 

These inequalities imply first, that for r1 > 7 in Figure 2, a greater influx of energy (or other 
limiting resource) is required to support the heterogeneous system without diffusion (20) than to 
support the homogeneous system, even though they have the same total population (18). The values 
of each of the ENERGY TRAPAs as a function of r1 are shown in Figure 2 for comparison. The extra 
energy input of the heterogeneous system is can be considered to be wasted through greater density-
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dependent mortality and respiration of the −𝑟 𝑈∗ /𝐾  term. Second, when diffusion is allowed in 
the heterogeneous case, less energy is needed to support the heterogeneous system with diffusion 
than the heterogeneous system without diffusion, although the population increases when diffusion 
occurs. Therefore, it is true that 𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,  ≥

𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 , , even though 𝑇𝑅𝐴𝑃𝐴 , ≥

𝑇𝑅𝐴𝑃𝐴 ,  . This implies that the heterogeneous system with diffusion is more 
efficient than the heterogeneous system without diffusion in that it requires less maintenance energy 
for a higher population. But if only a limited amount of energy (or other limiting resource) is 
available, then to achieve the largest population, it is not possible to do better than to spread it 
homogeneously between the patches. Reference [33] further shows that when the energy constraints 
are applied to limit the way ri and Ki can be assigned among the patches, such that the same amount 
of energy is input in both the homogeneous and heterogeneous systems, then it is impossible for 
𝑇𝑅𝐴𝑃𝐴 ,  > 𝑇𝑅𝐴𝑃𝐴 . 

The results presented in this section are for either two-or multi-patch, systems that are spatially 
discrete. Extensions to partial differential equations should be straightforward, although we do not 
know of such analysis for the above results of reference [33]. 

 

Figure 1. Size of ,heterogeneous diffusionTRAPA  (dotted) and ,  heterogeneous no diffusionTRAPA  and 

homogeneousTRAPA , (solid, overlapping) as function of r1. The ratio r1/K1 > r2/K2 holds after r1 > 7. The 

other parameter values are r2 = 3.5, K1 = 14, and K2 = 7. 

 
Figure 2. Size of 𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,  (dotted) and 
𝐸𝑁𝐸𝑅𝐺𝑌 𝑇𝑅𝐴𝑃𝐴 ,   (dashed) and  homogeneousTRAPAENERGY , (solid) as 

function of r1. r1/K1 > r2/K2 holds after r1 > 7. The parameter values are the same as in Figure 1. 

3. Analysis and Experiment: Consumer-Resource Chemostat Model 
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With the above constraints on energy, the reaction-diffusion models with logistic growth can be 
used to compare effects of different parameterizations of the model on population dynamics. 
However, the use of such logistic equation models for patches connected by diffusion has been 
criticized in that they are limited to the assumption of fixed resource levels [26,31]. Resources such as 
energy and nutrients are exploitable and behave as variables. This includes study of microbial 
populations in laboratory settings, which can be used for testing theory. Therefore, population 
growth is best modeled using a mechanistic, bottom-up approach with a population of consumers 
utilizing variable resources [34,35]. This approach is suitable for describing a population in space. It 
will be shown there that this approach has the advantage of avoiding some of the counter-intuitive 
results mentioned above for spatial models involving the logistic model to describe growth [36,37]. 

A general pair of equations for the consumer-resource system is: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
 =  𝐷

𝜕 𝑢(𝑥, 𝑡)

𝜕𝑥
 + 

𝑟 𝑛(𝑥, 𝑡)𝑢(𝑥, 𝑡)

𝑘 + 𝑛(𝑥, 𝑡)
− 𝑚(𝑥)𝑢(𝑥, 𝑡) − 𝑔(𝑥)𝑢(𝑥, 𝑡)  (21a) 

𝑑𝑛(𝑥, 𝑡)

𝑑𝑡
 =  𝑁 (𝑥) −  𝜂𝑛(𝑥, 𝑡) −

𝑟 𝑛(𝑥, 𝑡)𝑢(𝑥, 𝑡)

𝛾 𝑘 + 𝑛(𝑥, 𝑡)
 (21b) 

where u(x,t) is the consumer population abundance and n(x,t) is the nutrient concentration. Only the 
consumer is assumed to be diffusing. As before, D is the diffusion rate, while rmax is the asymptotic 
growth rate under infinite resources. Now k is the half-saturation coefficient, m(x) is the density-
independent mortality rate, g(x) is the density-dependent loss rate, Ninput(x) is the nutrient input, η is 
the loss rate of nutrient from the system, and γ is the yield, representing consumer individuals per 
unit nutrient. 

The consumer-resource chemostat model has the advantage that input of the limiting resource, 
nutrient in (21b), is explicitly denoted by a single driving function, Ninput(x). Therefore, it can be 
specified across a spatial region with no ambiguity in what the total energy input is at steady state 
(or any time); ∫ 𝑁 (𝑥). This differs from the spatial logistic model studied earlier, in which the 
energy input at steady state is the product r(x)K(x), where r(x) and K(x) are separate variables. The 
model (21a,b), discretized as 12 patches in a one-dimensional row to facilitate analysis, was used by 
reference [36] in parallel with an experimental setup on yeast in which a growing yeast population 
could be manipulated to disperse. The purpose of the model and experiment was to examine the 
relationship between the size of a population and diffusing in a discretized version of this consumer-
resource model with n patches in a one-dimensional line. All patches, except for no-flux conditions 
for the two end patches, were connected only to their two neighbors. The analysis was designed to 
evaluate two results that have come out of earlier analyses of the reaction-diffusion model with 
logistic growth. Zhang et al. [36] did the analysis for two versions of (21a,b); Model 1 with η = 0 and 
mi = 0, and Model 2 with gi = 0. Two important results came out of the analysis of the consumer-
resource model compared with the logistic model and were supported by the experiment. 

The first result of the logistic reaction-diffusion model is that if a consumer population exists in 
an environment in which an exploited renewable resource input is heterogeneously distributed, and 
there is a positive relationship between growth rate and carrying capacity, then the total steady state 
of a diffusing population (TRAPA) can attain a greater abundance than the non-diffusing population. 
It was proven in both Models 1 and 2 of the consumer-resource model over a range of parameter 
values relevant to the experiment, that: 

TRAPAheterogeneous,diffusion > TRAPAheterogeneous,no diffusion (22) 

for the consumer-resource model [36]. Thus, the logistic reaction-diffusion and consumer-resource 
models are in agreement. 

The second result of the logistic reaction-diffusion is that a population, TRAPAheterogeneous,diffusion, that 
is diffusing in an environmental space in which there is a heterogeneously distributed input of 
exploited limiting resource, can reach a greater steady state abundance (TRAPA) than a population 
either diffusing (TRAPAhomogeneous,diffusion) or not diffusing (TRAPAhomogeneous,no diffusion) in an environmental 
space in which the same total input of resources are spread homogeneously in the space. It was shown 
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in reference [36] that the result of the consumer-resource model disagrees with that result, meaning 
it is shown that:  

TRAPAhomogeneous,diffusion or not ≥ TRAPAheterogeneous,diffusion  TRAPAheterogeneous,no diffusion (23) 

These inequalities are shown in Figure 3 over a range of values of glow nutrient, which is the density-
dependent mortality rate, g, in odd-numbered patches in the 12-patch model (which receive low 
nutrient input), and where ghigh nutrient is the density-dependent mortality rate in the even-numbered 
patches (with high nutrient input). 

The details of the mathematical analysis and the confirmation by experiments on yeast are given 
in reference [36] and will not be detailed here, except to say that the experiments used patches, so the 
discretized version of equations (21a,b) was appropriate for describing those experiments. Separate 
experiments showed that conditions riKi > rj/Kj held for Ki > Kj, which agrees with the general 
relationships between r and K in microbial populations found by reference [38]. 

The Model 1 for the continuous PDE version was studied by reference [39], with equivalent 
results. 

4. Discussion 

We reviewed two important and related results that have been proved for the reaction-diffusion 
equation of a population of the type (3) or (8) in a spatially heterogeneous environment when the 
growth rate, r(x) and carrying capacity K(x) are positively related (which is automatically true for (3)). 
The first result is that if the population diffuses in space, the TRAPA can be greater than if it does not. 
The second result is that when the total carrying capacity ∫ 𝐾(𝑥) is spread heterogeneously across 
space and the population diffuses, the TRAPA can be greater than if the same total carrying capacity 
were spread homogeneously. It was also shown that the same results hold for the analogous system 
of two discrete patches differing in growth rate and carrying capacity initially studied by references 
[27,29] showed that models for discrete n-patch systems and other growth functions than the Pearl-
Verhulst equation produced similar results. So it appears to be a general property of models based 
on the general type of model represented by Equation (8) or its discretized variant (12a,b). These 
results would seem to imply that carrying capacities can be manipulated by creating heterogeneity 
in a landscape to support higher populations when population movements occur through diffusion. 

 



glow nutrient 

ghigh nutrient 
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Figure 3. Total carrying capacity TRAPAhetero,no diffusion (blue curve), total population abundance 
TRAPAhetero,diffusion (green curve), and total population for homogeneously distributed inputs (red 
curve), TRAPAhomogeneous,no diffusion, as functions of the gi value for the low nutrient input wells, glow nutrient, 
(odd patches) for fixed value of the gi = 0.001 for the high nutrient input wells, ghigh nutrient (even patches). 
TRAPAhomogeneous,diffusion coincides with TRAPAheterogeneous,diffusiion for D → ∞. The other parameters have been 
set to rmax = 0.1, k = 0.1, and γ = 1.0. TRAPAhomogeneous,diffusion and TRAPAhomogeneous,no diffusion coincide. 

The analysis of models of the type of Equations (8) and (12a,b), however, leaves out 
consideration that an energy or other limiting resource flux is necessary to sustain a population, and 
that the local energy or limiting resource flux is r(x)K(x) in the continuous case and riKi in the discrete 
patch case. Not taking this into account can lead to an inadvertent changing in the amount of energy 
(or limiting resource) input to the system when the local carrying capacities are changed, even when 
total carrying capacity, ∫ 𝐾(𝑠), remains the same. Reference [33] showed that when these energetic 
constraints are taken into account, the second counter-intuitive result disappears and a homogeneous 
distribution of energy (or other limiting resource) input becomes most efficient for supporting a 
population. It was also shown by reference [36] that when a resource is explicitly modeled, as in 
consumer-resource chemostat models, so that the energy input at each spatial point is clearly 
expressed in the equations, then some earlier results are better understood. In particular, the counter-
intuitive result from logistic reaction-diffusion models that heterogeneously distributed input of 
exploited renewable limiting resource can reach a greater steady state abundance (TRAPA) than a 
population either diffusing or not diffusing in an environmental space with the same total input of 
resources spread homogeneously is now shown to be an artifact of the logistic population equation, 
which does not model the population’s resources as a variable. However, the consumer-resource 
model is consistent with the logistic population model in showing that a population diffusing in a 
heterogeneous environment can reach greater abundance at equilibrium than the population in the 
same heterogeneous environment that is not diffusing. 

The results shown here for both the logistic model and the consumer-resource model apply to 
situations in which the population is assumed supported by an influx of energy or other resource 
(e.g., nutrient) that are limited, such that carrying capacity and per capita growth rate are positively 
related. The do not apply in cases in which growth rates have no correlation with carrying capacity. 
For example, when local carrying capacities are determined in terms of such things as number of 
nesting sites, refuges, or similar types of factors, rather than an exploitable resource, per capita 
growth rate is independent of carrying capacity. In that case, there are no paradoxical results from 
the the logistic equation, and it may be a good description of the population. The modeling by partial 
differential equations has great importance in understanding ecological populations dispersing in 
heterogeneous space [40]. For example reference [41], used a reaction-advection diffusion model to 
study the dispersal of fish moving into newly flooded areas in search for food. Like that model, many 
other models of population include advection in addition to diffusion, because organisms may have 
directional movement in many cases. However, reaction diffusion models without any directional 
movement are also common in ecology, as diffusion is a good approximation of movement in many 
cases [42]. 

Reaction-diffusion models of the type studied here play a role in conservation ecology, as 
populations exist on landscape that are heterogeneous in resources. Some areas may be rich enough 
in landscapes for a population to grow rapidly, while others may only have sufficient resources for 
the population to barely survive. Still other areas may be ‘sinks’ in which a population would 
decrease in size through time. The dynamics of a population is complicated by movement in the 
landscape, approximated as diffusion in reaction-diffusion models. It is possible for individuals to be 
attracted to sink areas, where they die or fail to reproduce, threatening the whole population with 
extinction [43]. Numerous papers have expanded on the effects of landscape heterogeneity on 
populations [44–46]. The experiments and model suggest that different rates of dispersal among 
sources and pseudo-sinks in nature can affect regional population size and certain rates of diffusion 
could maximize the size of the total population in a heterogeneous region. For example, in an 
experiment described by references [45,47,48], densities of seeds of the plant Cakile edentula were 



Mathematics 2020, 8, 49 10 of 12 

 

manipulated along a gradient through sand dunes. In this case the seaward or beach end of the 
gradient was a source of seeds, while the middle and landward sites were net sinks in which mortality 
was higher than reproduction. A model by reference [49] showed that the plants were most abundant 
in the sink sites because of the high seed migration from the source. This could be an example of a 
case where diffusion in a heterogeneous environment results in total population size greater than the 
total of individual sites along the gradient in the absence of diffusion, although this is difficult to 
prove. In any case, conservation ecologists must take into account possible effects of this sort on 
animal and plant populations when designing nature reserves. 

5. Conclusions 

The reaction-diffusion equation with a logistic growth term is a fundamental equation 
describing an ecological population. A counterintuitive result of such a system is that the total 
realized asymptotic population achieved in a heterogeneous system is not the same as the sum of 
local carrying capacities of homogeneous subareas. This sometimes may lead to misleading results if 
it is not kept in mind that it is the input of energy or a limiting resource that maintains a population. 
The carrying capacity is simply a consequence of the spatially varying energy or resource inputs and 
may not add in a linear way. The use of consumer-resource models is often a better way to relate the 
input of energy or limiting nutrients to the total size of a population in space. 
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