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Agent-based modeling (ABM) has become an established methodology in many areas of biology, 

ranging from the cellular to the ecological population and community levels. In plant science, two 

different scales have predominated in their use of ABM. One is the scale of populations and 

communities, through the modeling of collections of agents representing individual plants, 

interacting with each other and with the environment. The other is the scale of the individual plant, 

through the modeling, by functional-structural plant models (FSPMs), of agents representing plant 

building blocks, or metamers, to describe the development of plant architecture and functions 

within individual plants. The purpose of this review is to show key results and parallels in ABM for 

growth, mortality, carbon allocation, competition, and reproduction across the scales from the plant 

organ to populations and communities on a range of spatial scale to the whole landscape. Several 

areas of application of ABMs are reviewed, showing that some issues are addressed by both 

population-level ABMs and FSPMs. Continued increase in the relevance of ABM to environmental 

science and management will be helped by greater integration of ABMs across these two scales. 

Key words:  population-level models, functional-structural plant models, gap phase models, forest 

succession, environmental gradients, global change, invasive plants, spatial patterns, spatial scaling, 

plant carbon allocation.  
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INTRODUCTION 

Over the past few decades, agent-based modeling (ABM), also called individual-based modeling 

(IBM), has revolutionized many areas of biology, not least the modeling of individual plants, plant 

populations and plant communities(Kurth, 1994, Judson, 1994, Shugart et al., 1992, Grimm, 1999, 

DeJong et al., 2011). Two general areas of application of ABM to plant science have developed.  

 ABM at the population and community levels aims at predicting plant population or 

community dynamics by modeling multiple individual plants (agents) that interact with their 

environment and each other. Each agent has a set of state variables, which can include age, size, 

condition, and spatial location, as well as adaptations, which can include both physiological traits 

and behavioral traits. This is critical because plant traits play a crucial role in plant ecology via 

determining the success or failure of species in a given environment. These traits govern an 

individual’s growth, reproduction, dispersal, allocation of nutrients and energy, and mortality in 

relation to environmental factors. Traits may vary among the individuals due to genetic variation but 

may also change through time due to ontogeny and plasticity. ABMs differ from differential equation 

(DE) population and matrix model (MM) size-structure models, in which a top-down description is 

imposed on populations through population-level parameters; i.e., birth and death rates at the 

population level. ABMs are bottom up-models such that population-level behaviors emerge from the 

interactions that autonomous individuals have with each other and their environment. The number 

of individual-level attributes that an individual can have in an ABM is virtually unlimited, in contrast 

to DE or MM models of populations, in which it is awkward to include more than a few attributes. 

Therefore, complex questions concerning how populations and communities respond to 

environmental conditions can be addressed by ABMs through the effects of those conditions on 

individuals and interactions among individuals.  

 Historically, the first use of ABM in plant ecology, describing multiple interacting individual 

trees, was probably the JABOWA model (Botkin et al., 1972). This was termed a ‘gap-phase 

replacement’ model, because it described succession of tree communities in gaps created in forests 
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due to the death of a canopy tree (typically 100 m2 or 0.01 ha) by taking into account the differential 

effects of shading on trees of different species and different heights in relation to their neighbors. 

Tree models were the earliest ABMs partly because forest succession has been a key area of ecology 

since its inception and partly because the long history of forest mensuration has provided data on 

growth of important commercial species. The initial successes of JABOWA in describing succession 

and altitudinal change in tree communities inspired many variations of forest models, including 

extensions beyond small plots to landscapes; e.g., FORET (Shugart and West, 1977), FORTNITE (Aber, 

1982), LINKAGES (Post and Pastor, 1996),  FORMIND (Kohler and Huth, 1998), FORMAN (Chen and 

Twilley, 1998), iLand (Seidl et al., 2012a, Seidl et al., 2012b); TEMFORM (Zhang et al., 2013, Kolobov 

and Frisman, 2016b) and others. Reviews include Bugmann (2001), Porté and Bartelink (2002), Xi et 

al. (2009), and Wallentin (2017).  

 The second scale at which there are now decades of application of ABM is at the level of 

development of individual plants. The agents in this case are modules (metamers) within the plant 

and algorithms are used to model repetitive branching patterns by which the plants grow, with 

different morphologies for different species. Among methods of plant morphological modeling is the 

formal language of L-systems pioneered by Lindenmayer (1968), Lindenmayer and Prusinkiewicz 

(1990), and Prusinkiewicz (1998), and described and reviewed by Kurth (1994), Prusinkiewicz and 

Runions (2012), as well as the AMAP methodology (de Reffye and Houllier, 1997). These methods 

arose out of interest in the development of 3-D spatial structure of individual woody and herbaceous 

plants and in the visualization of their structures, which led to these models of plant morphology. 

Because the development of plant structure interacts with light capture and material flows, these 

can be integrated into a general methodology that combines geometric structure with function; that 

is, functional-structural plant modeling (FSPM), in which plant architecture, including roots, is 

explicitly modeled in 3-D and linked to process-based modeling (e.g., Landsberg and Waring (1997)) 

of functional aspects, such a light capture, and carbon and nutrient flows; see Special Issue of Annals 

of Botany ((Cieslak et al., 2011, DeJong et al., 2011, Han et al., 2011, Sarlikioti et al., 2011, Xu et al., 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa043/5805513 by Edm
on Low

 Library, O
klahom

a State U
niversity user on 19 M

arch 2020



Acc
ep

ted
 M

an
us

cri
pt

 

5 

 

2011)), as well as Faverjon et al. (2019). This approach, while focusing on the internal structure and 

function of plants, is also used at the scale of multi-plant combinations to provide better 

understanding of the details of plant interactions.  

 A number of other related modeling approaches with the same purpose as ABM of allowing 

macroscale dynamics to emerge from microscale actions. In particular, cellular automata (CA) 

models are spatially explicit, and the agents are discrete spatial cells, in which the variables are 

different occupancy states of vegetation of the cells (Czárán (1998)). Cells can interact with 

neighboring cells through propagule dispersal and competition and change state through those 

interactions. 

 Our goal here is to (1) provide an overview of the basic structure of ABMs, used in the 

modeling of plants, plant populations and communities; (2) provide examples of applications of 

ABMs in several areas of biological and ecological research; and (3) discuss the future challenges and 

opportunities ahead for under for this modeling. In particular, the limitations of the variations of 

these models are discussed, as well as ways of integrating modeling at the individual plant level, 

population level, and community level. Although this review covers both ABMs at the 

population/community level and individual plant level (e.g., FSPMs), the emphasis is on the 

applications of former, with the focus on FSPMs being largely directed to those with the most 

relevance or potential application to issues at the population level.  

 

 

INDIVIDUAL PLANT PROCESSES 

Plant growth  

Plant growth has been modeled in different ways, including by empirical growth functions, by 

process-based models, and by models that combine development of architecture with biomass 

increase. The last way can include both clonal and non-clonal growth.  
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 Gap phase replacement (gap) models such as JABOWA use empirically based equations to 

describe the life cycle processes of the trees, and in general do not go into detail concerning the 

actual physiological processes. JABOWA simulates plant succession in a 0.01 hectare plot, with a 

given set of tree species and environmental conditions. Each tree is simulated individually from the 

sapling stage. JABOWA requires input of parameters supplied by the user, as described in detail in 

Botkin (1993). The basic equation for growth involves computing the yearly increment of growth of 

the tree volume, given as follows. 

 (   )    (            ⁄ ) (           )                                                             ( ) 

where      is the volume of a tree idealized as a cylinder and where D = tree diameter,  

 H = tree height, Dmax = maximum diameter of a given tree of species, Hmax = maximum height of the 

tree species of species, LA is the leaf area of the tree, and the constant R is the maximum growth 

rate per unit leaf area. The relationships between tree height and leaf area with diameter in 

JABOWA are given by the allometric relationships, 

                 
                        (2) 

where b2, b3, and C are empirical parameters that can be fit to a species. Other variables like  vertical 

leaf profile, etc., are deduced from stem diameter via species-specific allometric relationships and 

growth is allocated accordingly. Different species have different empirically based growth and 

allometric parameters, but the same model structures. The effect of the environment, 

f(environment)  =  f(AL)*Q*s(BAR), is composed of effects of light shading, f(AL), where AL is 

available light, site quality, Q, and an upper limit on basal area s(BAR), each of which decreases the 

growth rate of a tree from its maximum. Site quality involves a temperature factor, a wilting factor 

for effect of drought, a wetness factor for effect of soil wetness, a nitrogen factor for effect of soil 

nitrogen, and a light shading effect, which is covered below in Plant Competition. The key limitations 
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of the gap models are that individual spatial locations are not taken into account, and that empirical 

growth parameters are available largely for common or commercial tree species.  

 The use of plant functional types, where physiological process-based models for tree growth 

replace the empirical parameterization in ABMs, expands the ability of population dynamics to be 

simulated in terms of plant responses (e.g., Kazmierczak et al. (2014)). An example of this more 

mechanistic modeling approach is PLATHO (PLAnts as Tree and Herb Objects), which simulates the 

growth of plants, including their carbon and nitrogen fluxes. Its basic processes are morphological 

development, phenological development, photosynthesis, respiration, biomass growth and 

allocation to biochemical pools, water uptake, nitrogen uptake, and senescence (Gayler and 

Priesack, 2006). An array of submodels is used for the different processes. PLATHO models plant 

growth and competition in a spatial setting that can simulate up to 20 competing individuals.  

 The version of the model described in Gayler et al. (2007), which includes allocation to 

secondary compounds, focuses on the behavior of a few carbon-based components of the model, 

including available carbon assimilates, Aav, structural biomass (wood for trees), carbon-based 

secondary compounds, and reserves, R. All are measured in terms of grams of glucose. The 

formation of carbon based-compounds requires sufficient nitrogen levels but is less strongly 

dependent on nitrogen concentration, N, than on carbon. There is a tradeoff in potential allocation 

to defensive compounds and plant growth rate.  

An equation for the current assimilates can be written, using the authors’ notation; 

oldMRactav ADtRPA  )(  .       (3) 

Here Pact is the current photosynthesis rate, R is the potential amount of reserves that can be 

remobilized, τR the rate of remobilization of reserves. DM is the demand for maintenance, Aold is the 

assimilate remaining from the previous time step, and Δt is the time step of a year. 
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In addition to assimilates, a limiting nutrient, assumed to be nitrogen, N, here, is obtained from soil 

and nitrogen remobilization, respectively; 

pottranspotuptav NNN ,,  .        (4) 

 The modeling approach in PLATHO is hierarchical priority type (Le Roux et al. (2001)) in that 

there is a hierarchy of priorities for meeting demands of internal components of the plant.  Pools of 

carbonates and nitrogenous compounds are assumed, which are augmented daily by carbon 

assimilation and nitrogen uptake, plus mobilization of reserves. These are distributed by a priority 

scheme. Meeting maintenance costs is the first priority for the allocation of carbonates. 

Reproduction is the second priority and vegetative growth the third priority after blooming. If the 

available carbon is greater than what is needed for growth, then the remaining assimilate can be 

converted into defense compounds. If the amount of available assimilates exceeds both growth and 

defense demands, then the last priority is replenishment of reserves. The demands on nitrogen 

compounds are proportional to the demands on carbon.  

 In other models of the hierarchical approach for utilization of energy by an individual plant, 

priorities may also depend on the proximity of a component to the source (e.g., PEACH of Grossman 

and DeJong (1994), and TREGRO of Weinstein and Yanai (1994) and Retzlaff et al. (1996)). In TREGRO 

aboveground components have first access to new photosynthetic. Both PEACH and TEGRO are used 

for individual trees, and are divided, as in PLATHO, into a small number of functional components 

within the trees.  

 The modeling of Maréchaux and Chave (2017) took process-based modeling beyond the 

application to just one or a few trees. Their spatially explicit forest growth simulator, TROLL, for 

tropical forests, like other models of complex multi-species systems (e.g., Bossel and Krieger (1991), 

Köhler and Huth (1998), Köhler and Huth (2004), Fischer et al. (2016), Liu et al. (2016), Zakharova et 

al. (2019), uses species-specific functional traits. Tree geometry is set by allometric relations, as in 

JABOWA, but leaf area varies dynamically as a balance between allocation and losses. At the leaf 
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level, the model uses the Farquhar et al. (1980) model for photosynthesis, with photosynthesis 

limited by either Rubisco activity or ribulose bisphosphate regeneration. The maximum rate of 

carboxylation and maximal electron capacity are co-limited by nitrogen and phosphorus and 

stomatal conductance varies with the whole-plant water use efficiency and abiotic conditions. 

Stomatal behavior is regulated by an optimization criterion based on Cowan and Farquhar (1977). 

This theory postulates that stomata should act to maximize carbon gain, photosynthesis, while at the 

same time minimizing water lost by transpiration. Allocation of net primary production is to canopy 

and wood based on empirical relationships, and then, within the canopy, different fractions go to 

leaves, twigs, and fruits. Empirical relationships are also used for respiration. Using species-specific 

parameters for 163 species, TROLL simulated the successional dynamics of a tropical forest from 

bare soil in an area of 400 x 400 m on monthly time steps.  

 A further step towards combining physiological processes with greater structural detail was 

taken by Grote and Pretzsch (2002), who simulated individual tree development in stands of beech 

and spruce depending on carbon, nitrogen, and water balance of individual trees, designed to 

calculate growth as a function of climatic driving variables. A tree is assumed partitioned into pipes 

and the growth in dry matter of the tree equals the collective growth in dry matter of all of the 

pipes. The pipe model (Shinozaki et al., 1964), of functional equilibrium theory, assumes that there 

must be a long-term balance between the acquisition of carbon by foliage and nutrient by roots with 

the use of these for growth, so that the relationship between the leaf mass and the pipe cross-

section area in branches and in the stem of a tree does not change through time. It is assumed that 

the relative allocations of carbon and nutrients serve some optimization goal such as the 

maximization of carbon production. This type of model is defined as a teleonomic model by Thornley 

and Johnson (1990). These models can show how a tree should optimally behave in response to 

environmental conditions. For example, a model of carbon and nitrogen allocation in a forest stand 

in steady state (Mäkelä et al., 2008) showed that increasing nitrogen availability to the roots should 

optimally lead to a decrease in carbon allocation to fine roots, as might be expected, but, less 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa043/5805513 by Edm
on Low

 Library, O
klahom

a State U
niversity user on 19 M

arch 2020



Acc
ep

ted
 M

an
us

cri
pt

 

10 

 

intuitively, to increased allocation to wood rather than to foliage, which remains stable in the model. 

Grote and Pretzsch (2002) simulated the growth of a 5312 m2 stand of 215 beech and spruce trees in 

southern Bavaria over five years. 

 The full integration of tree 3-D structure with function is taken by the FSPM 

approach, which is based on the L-system formalism (Lindenmayer and Prusinkiewicz, 1990) 

in an environment of light interception above ground and transfer of water and mineral 

nitrogen from belowground sources. As parts of a modular organism, the common feature of 

all plant shoots is that they are built from elementary subunits, or building blocks, called 

phytomers (White, 1979) (same as metamers). Shoot morphogenesis arises from the initiation 

of new metamers by shoot meristems, from the growth of the individual organs produced, and 

from the differentiation of support tissues. Metamer responses include branching, apical 

growth, radial growth, death, and dormancy. Typically, the plant grows on daily time steps, 

and the rates of branching are affected by genotype, carbon availability, spatial position, and 

light conditions. The FSPM approach is able to take into account details of foliage 

architecture such as leaf orientation (Sterck et al., 2005). Light capture is integrated over that 

captured by all leaves and nitrogen uptake is limited by root length within the soil. Biomass 

allocation between shoots and roots is assumed to follow an allometric relationship. Further 

partitioning between organs within the shoots is then assumed to follow the relative carbon 

demands of organs to sustain maximum expansion in dimensions. 3-D root models using 

FSPM have been developed in the same way to simulate root-soil interactions (e.g., Dunbabin 

et al. (2013)). The specific root architecture can be important in plant competition (e.g., Van 

Noordwijk et al. (2015)). 

 The modeling of clonal plants has combined physiological structure with horizontal 

structure. Such ABMs, e.g., CLONAL (Mony et al., 2011) may consist of two types of agents, 

potentially autonomous shoots (ramets) connected by horizontal stems, along which resources may 
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be conducted. CLONAL simulates two-dimensional growth of a clonal plant during a growing season 

as the horizontal stems forming branches on a landscape (or model lattice) of hexagonal grid cells. A 

ramet may be formed at the end of a connecting unit. It performs photosynthesis and nutrient 

uptake, the results of which can be stored in the connecting stems or used for further growth of the 

clone through the formation of a new connecting unit branching from the ramet. The probability of 

branching from a ramet, creation of a new ramet, or extension of an existing connector depends on 

a set of rules, and is dependent on carbon metabolism and storage. Different strategies may involve 

short branches to create a highly ramified plant (termed phalanx), or few, long branches (termed 

guerilla). CLONAL has been used for modeling competing populations of clonal plants (Bittebiere et 

al., 2012). ABM includes stochasticity in the simulation of the effects of the network structure of 

plants on the growth strategy of clonal plants (Campillo and Champagnat, 2012, Vincenot et al., 

2016). 

Carbon allocation within plants 

 Plants allocate their acquired resources, energy (or carbon) and nutrients, to meet their 

several essential functions. In order to grow and reproduce, plants allocate resources to capture 

solar radiation by growing leaf biomass and to acquire nutrients by growing fine root biomass.  

Investment in stem wood, beyond what is needed structurally by the foliage and roots, also is 

employed to obtain a competitive height advantage for capturing light (Givnish et al., 2008)).  Plants 

exist within the constraints that only a certain amount of solar radiation is available per unit area of 

land, and only a fraction of that energy can potentially be captured by photosynthesis. Therefore, 

the amount of carbon that can be allocated is limited, and allocation of carbon to one function 

necessarily decreases the carbon that could be allocated to other functions.  

 Ability to adjust carbon allocation in response to environmental conditions is widely 

documented (Litton et al., 2007) and the basic processes involved in allocation are reviewed by 

Lacointe (2000). The trade-off in investment between root and shoot (foliage) is well known and has 
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been the subject of many studies and models (e.g., (Hermans et al., 2006, Ingestad and Agren, 1991, 

Thornley, 1995, Wilson, 1988)).  Seidl et al. (2012a), in their model, iLand, used a process-based 

approach with variable hierarchical allocation of carbohydrates among leaves, fine and coarse roots, 

and reserve and stem pools in order to predict changes in productivity and mortality in 100 x 100 m 

cells across spatial transects in which radiation, nutrients and water availability varied. Nutrient 

deficiency can stimulate biomass allocation to root biomass and morphology (Hermans et al., 2006), 

whereas increased resources and stand age result in increased partitioning to aboveground wood 

production and decreased to belowground (see review by Litton et al. (2007)). However, shading of 

leaves can lead to higher leaf area per unit biomass and higher allocation of aboveground growth to 

leaves in shade than in the sun in deciduous saplings (King, 2003). Investment in additional stem 

wood, beyond what is needed structurally by the foliage and roots, to obtain a height advantage in 

capturing light, is another possible destination of carbon allocation. PLATHO (Gayler et al., 2008), 

which was described earlier, is another example of a model that is used to explore allocation 

strategies. Gayler et al. (2008) used PLATHO with data from apple trees to simulate the effects of 

different levels of nitrogen fertilizer on apple trees, which they compared with growth data. They 

found that increased growth rates resulting from high fertilization were associated with decreased 

levels of defense compounds in leaves, suggesting a general conclusion concerning the strategy of 

apple trees for allocation of assimilate. When nitrogen is abundant, the apple tree invests 

assimilates into shoot growth, rather than towards the defensive pool of phenolic compounds, 

which are usually less needed when nutrients are abundant.  

 A model of dry matter portioning applied to Douglas fir and beech (Bartelink, 1998), which 

incorporated the effects of site conditions, dominance position, and thinning, showed that over time 

for trees in a stand, there should be a gradual increase in branches and a decrease in fine roots and 

foliage in response to thinning. A model for carbon and nitrogen dynamics in an a growing even-

aged coniferous forest (King, 1993) showed that optimal fine root allocation for a competing 

individual was less than 5% of total production for adequate nitrogen, but rose to 30% as nitrogen 
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became more limiting with growth of the stand. This shift to roots had the benefit of decreasing the 

losses of nutrients from the stand by leaching, although it slowed the production of wood. 

 Assimilate allocation is a key component in FSPMs. In the short term, partitioning of the 

whole-plant carbon among the different sink organs (those that are growing and need carbon input) 

and/or functions determines the relative growth rates of the various plant components, including 

structural as well as harvestable parts. However, assimilate allocation is involved in a number of 

feedback processes that make it even more central in the longer term. As a significant example, 

young leaves, which are sinks for carbon, the growth of which is dependent on current assimilate 

allocation, will later become carbon sources, thus affecting the future carbon inputs. As another 

example, the growth of sinks is both the result of carbon allocation to them and a major 

determinant of the carbon allocation pattern. Unfortunately, lack of precise knowledge of carbon 

partitioning remains a weak point in current models, although its basic principles and mechanism are 

relatively simple and fairly well understood. An additional problem is that different models discretize 

plant components in different ways (from individual metamers up to larger groupings) making model 

comparisons difficult. However, Reyes et al. (2019) have developed a Multi-Scale Carbon Allocation 

model (MuSCA), which allows simulation of carbon allocation to be defined at multiple scales. This 

approach will help in identifying the topological scale at which allocation can be modeled that is the 

best compromise between model accuracy and simplicity. 

Plant competition 

 Extension of modeling of individual plants towards populations and communities requires 

modeling intra- and inter-specific competition. Gap models such as JABOWA are not spatially 

explicit. Such gap models assume that the conditions in the gap of area 0.01 ha or so are 

homogeneous; that is, although the trees may differ in size and species, no specific locations of the 

trees with the gap are given, so every tree in principle competes for light with every other tree, 

according to their relative heights and leaf area. Therefore, interactions are averaged over all of the 
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trees of the plot. The light response function, which is part of the factor fi(environment)   =  

fi(AL)*Qi*s(BAR) of equation (1), i.e., the shading response, is 

fi(AL) =    (   
   (     )) , where AL = available light and               ,  PHI = light 

incident above the canopy, SLA = shading leaf area, calculated from the leaf areas of all of the trees 

higher than the ‘target’ tree, and k1 , k2, k3, and k4 are constant parameters. 

 The assumptions of the gap models miss the fine-scale effects of spatial interaction between 

trees that are a function of inter-tree distances. In spatially explicit ABMs, on the other hand, every 

tree has a specific location and affects other trees according to both size relationships and distance, 

so that effects of competition depend on the relative sizes and distances between neighboring trees. 

The model FOREST (Ek and Monserud, 1974) was perhaps the first spatially explicit forest ABM. 

Other early models include that of Green (1989), which simulated two species on a CA spatial grid to 

study the effects of fire. Pacala et al. (1993), Pacala and Deutschman (1995), in SORTIE, extended 

modeled space beyond the 0.01 ha range of local interactions by including spatial locations of each 

tree. SORTIE is capable of including the realistic detail of individual trees having specific locations 

and competing with local neighbors, by changing the local available light environment at each 

location and height. The light a plant receives is calculated in detail by the number, sizes, species-

identities and relative locations of neighbors that cast shade. Fine-scale spatial patterns of tree 

stems and biomass emerge from the simulations (Canham et al., 2004).  Pacala and Deutschman 

(1995)show that including spatial explicitness has system-level consequences that might not be 

captured in ‘mean field’ approximations that leave out horizontal spatial structure. The authors’ 

model of a hardwood forest predicted twice the old growth basal area predicted by the mean field 

approximation.  

 Although in most ABMs light is the main resource competed for, competition for nutrients is 

included in some models, such as nitrogen in LINKAGES (Post and Pastor, 1996) and soil water in LES 

(Liénard and Strigul, 2016) and in Reineking et al. (2006). A number of approaches developed to 
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model plant competition that include both light and nutrient competition are reviewed by Berger et 

al. (2008). In CA and grid-based models, in which several plants may occur together with no spatial 

structure within a given grid cell, they may all compete with other within each spatial cell in the 

same way as in forest gap models. In spatially explicit models where space is continuous, a variety of 

approaches for representing competition are used. Fixed-radius-neighborhood (FRN) models assume 

a circular area for each plant, roughly corresponding to the adult canopy area, such that competition 

occurs where the circles of different plants overlap. A refinement on the FRN is the “zone-of-

influence” (ZOI) approach, in which, again, the ZOIs represent the circular areas on which plants 

acquire resources (Weiner et al., 2001, Wyszomirski, 1983). But as the plants grow in size, their ZOIs 

also grow. Competition occurs where the ZOIs overlap, but the mode of competition, e.g., whether 

symmetric or asymmetric, must be defined by the user. Because the ZOI is not spatially structured, 

if, for example, a seedling is within the ZOI of a larger plant, no difference is assumed as to how far 

within the ZOI the seedling is. The ZOI approach has also been applied to competition of clonal 

plants (Bittebiere et al., 2012). The geometry of light extinction in heterogeneous vegetation is 

reviewed by (Boulain et al., 2007). 

 The ZOI approach has been modified to include more realistic geometries of spatial 

interactions (field of neighborhood, FON). Unlike the ZOI, which assumes a constant effect of 

competition across the zone around the plant, in the FON, the strength of competition decreases 

exponentially from each plant in the population (Berger and Hildenbrandt, 2000, Berger et al., 2002, 

Berger et al., 2004). The competitive effect of one tree (A) on another (B) is a function of the 

strength of the competitive strength tree A, which depends on its size, and its distance from tree B. 

The total effect on growth of a given tree depends on the competitive effects of all other trees 

whose FONs overlap with that tree. The FON approach has been applied to above- and below-

ground interactions of grass (May et al., 2009), to growth models based on metabolic theory (Lin et 

al., 2013), and to facilitation of growth of some plants through positive feedbacks by others (Lin et 

al., 2012). The FON approach captures essential aspects of spatial competition and appears to be a 
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reasonable standard way of modeling interactions. But the FON method has limitations, discussed by 

Berger et al. (2008). For one thing, the effect of the plant on local nutrient resources through 

exploitation is generally not considered. Even in Grote and Pretzsch (2002), where water and 

nutrients are modeled in some detail, their availabilities are set externally, although the tree can 

have some negative effect on water reaching the soil by interception of precipitation. Secondly, 

phenotypic plasticity in response to heterogeneity and competition by other plants is not 

considered, at least in the types of models, forest models, reviewed by Berger et al. (2008). Detailed 

root and soil modeling can help overcome both deficiencies. Dunbabin et al. (2004), Dunbabin et al. 

(2013) review six root system 3-D architecture (RSA) models of root-soil interactions. These models 

are able to simulate, to different degrees, the structural development through time, and uptake of 

water and nutrients, including their local depletions. Carbon dynamics has been incorporated in the 

model SimRoot (Clausnitzer and Hopmans, 1994, Lynch et al., 1997). Incorporated into FSPMs, the 

root system can respond plastically to changes in water and nutrients and through changes in carbon 

allocation (Han et al., 2011, Louarn and Faverjon, 2018). There are still major challenges in such 

models of root architecture, however, due to computational intensity in simulating nutrient uptake. 

 As another example of a detailed process modeling approach to competition, Gayler et al. 

(2006) extended PLATHO model to competition experiments in phytotrons of mixed cultures of 

juvenile beech and spruce, in which spruce dominated. The model indicated the importance of the 

starting conditions and spacing densities. Beech has greater plasticity in allocation of assimilates, 

which was a disadvantage when beech and spruce were started with similar heights and high 

densities, as beech allocated more to diameter growth, while the less plastic spruce increased in 

height faster and outcompeted the beech for light. These process-based models were used for the 

limited purpose of simulating individual trees or small assemblages of competing trees.   

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa043/5805513 by Edm
on Low

 Library, O
klahom

a State U
niversity user on 19 M

arch 2020



Acc
ep

ted
 M

an
us

cri
pt

 

17 

 

Plant mortality 

 There are two main mortality processes in most models.  The first is simple age-dependent 

mortality not due to competition, where, in JABOWA,      (    )
       , is the yearly 

probability of mortality, where AGEMAXi is maximum age of an individual of species i and 

            . The second mortality process is from effects of stress due to competition.  Trees 

that grow poorly are much more likely to die than healthy trees.  JABOWA, for example, tests 

whether the last annual growth increment is less than a minimum value, set as the parameter AINCi. 

It is assumed that a tree whose diameter increment falls below this minimum would have only a 1 

percent chance of surviving those 10 years. A random number is selected, and if it is less than AINCi, 

the tree dies.  Other models use other measures of stress, such as stemwood increment relative to 

leaf area (FORKSA, Price and Apps (1995) and whole tree carbon balance (e.g., HYBRID, Friend et al. 

(1997); and model 4C of Bugmann et al. (1997)). 

 In models of individual plants, such as FSPMs, mortality usually refers to particular organs 

within the plant. Root hairs have a high rate of turnover, and leaves are shed seasonally. In the 

model architecture model ALMIS (Eschenbach, 2005), leaves that have net negative carbon balance 

may be shed at other times, and a branch is dead when the terminal apex stops functioning and all 

the organs on the branch are dead (Mathieu et al., 2009). 

Reproduction 

 Modeling of individual-level reproduction has largely been applied to trees, and has been 

implemented in different ways. In JABOWA, for example, for shade-intolerant species, saplings can 

enter only if the light intensity at the forest floor (i.e., available light, AL) is greater than 99% of 

incident sunlight (AL > 0.99) and if the site quality, Qi, is greater than zero. Saplings of a shade-

intermediate-tolerant species can be added even if the light intensity at the soil surface is less than 

99% of the incident sunlight, but greater than the empirical species-specific minimum. If light 
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intensity is in this range, then a certain number of saplings can enter in a given year. How many 

individuals of a shade-tolerant species i can enter is a stochastic function of the environmental 

conditions. For both shade-intermediate-tolerant and shade-tolerant species, if the  inequality 

regarding light availability is true, then a number of saplings for the species can enter. In other 

models lack of adequate moisture and freezing events (FORENA, Solomon (1986)), lack of chilling 

(FORSKA, Prentice et al. (1993)), and spring frost events (FORECE, Kienast (1987)) are specific effects 

that are taken into consideration. Models limited to the development of individual plants that we 

know of do not simulate population growth through reproduction, but they may simulate fruit 

production and thus fecundity, which can be a basis for extending to population growth. 

Scaling to greater spatial areas 

 Forest simulators of the JABOWA type cover only areas of 0.01 ha or so, a scale at which 

competitive effects can be averaged. This approach could be used with no further model 

development to simulate a landscape by combining many spatial cells, but the cells would be 

independent, which this would ignore both effects such as shading coming from outside the cell and 

seed dispersal between cells. 

 Methods that allow scaling up to larger areas, while at the same time having the important 

properties of ABMs, have been reviewed (e.g., Pacala and Silander Jr (1990); Gratzer et al. (2004); 

Strigul et al. (2008); Xi et al. (2009)). However, simulating the patchiness of the light regime, which is 

essential for predicting dynamics of the full forest community, including understory and forest floor 

species and processes, relies on fine-resolution spatially explicit models such as SORTIE (Canham et 

al., 1994, Coates et al., 2003, Adams et al., 2007). Spatially explicit models such as SORTIE and TROLL 

can cover larger areas, but may be constrained by computational limits. 

 Scaling to larger areas involves taking into consideration heterogeneity (Jeltsch et al., 2008). 

Some models have dealt with this issue. In order to simulate forest landscape pattern, while still 

maintaining the ABM approach (Smith and Urban, 1988) developed ZELIG, which uses a grid of 
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contiguous 0.01 cells. Those authors modeled 9-ha stands by using this grid, taking into account the 

edge effects on tree establishment and growth that comes from the surrounding four cells. Urban et 

al. (1999) extended 10 m x 10 m cells with individual trees to the heterogeneous landscape scale, 

which could include spatially contagious processes of tree colonization and fire. The TROLL model 

(Chave, 1999) is also an example of an individual-based tree model that has been used to simulate 

natural forest dynamics at the landscape scale. At an even larger scale, Friend et al. (1997) proposed 

the Hybrid 3.0 model in which multiple plots of an individual-based tree and plant model are linked 

together with biogeochemical factors. Other models sacrifice some fine-scale spatial resolution and 

either link many gap-sized plots together, connected by seed dispersal (Fischer et al., 2016, Liu et al., 

2016, Mladenoff, 2004, Moorcroft et al., 2001a, Urban et al., 1999, Elkin et al., 2012), or simply 

scatter independent gap models across large regions (Bugmann et al., 1997, Shuman et al., 2011).   

 In another approach to scaling up to larger spatial areas, Liu and Ashton (1998a) developed 

the FORMOSAIC ABM to similarly simulate landscape level tree dynamics. In FORMOSAIC the 

location of each individual tree is modeled within a 0.01 grid cell. It is assumed that each cell is 

linked to others by seed dispersal. Liu and Ashton (1998b) applied their model to a 50 ha permanent 

plot in the Pasoh Nature Reserve in Malaysia, but the model can be applied to areas of any size, 

depending on computer capability. At a still larger scale, the Ecosystem Demography (ED) model 

(Moorcroft et al., 2001b) again started with ABM dynamics of individual tree functional types in 

individual 15 x 15 m cells, coupled with biogeochemical models of fluxes of water, nitrogen and 

carbon. However, they converted the output of individual cells into age- and size-structured 

approximations described by partial differential equations that are the first moment (or mean) of a 

stochastic process involving many simulations. This approach allows scaling spatially by taking into 

account the heterogeneity without having to keep track of every individual tree. The authors applied 

their model to the area of South America between 15° N to 15° S. The ED model forms the basis of 

the dynamic global vegetation model (DGVM), in which terrestrial biosphere vegetation is linked to 

biophysical and physiological cycles and is driven by climate (see also Sato (2009)). Although based 
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on traits of individual plants, these models do not simulate the structure of tree communities, and 

are thus referred to as vegetation models rather than plant population models (Jeltsch et al., 2008). 

These models may capture key aspects of the effects of global change on vegetation, but because 

they lack the high degree of species and functional diversity of real forests, they may be limited to 

coarse projections. 

APPLICATIONS 

Models can be created for understanding, for predicting, for guiding management, or for some 

combination of those goals. ABMs are especially suited for specific applications, as they can take into 

account details of a given situation. Therefore, ABMs have been used for practical applications in 

both forestry and agriculture. A few examples of modeling at the individual plant scale and the 

population and community scales are described below. Some additional examples from the last 12 

years are listed in Table 1.   

Predicting forest succession and productivity 

 Models have been used to make and test predictions in both forest succession and forest 

productivity. Predictions are important for making long-term decisions regarding future forest 

composition in the face of global change, invasion by non-native trees, and effects of forest 

fragmentation. So the predictive power of ABMs has been emphasized (Loehle, 2000, Perry and 

Millington, 2008). Because forests play an important role in the carbon cycle and, therefore, in the 

effects on the global climate system to carbon dioxide emissions, accurate projections of the carbon 

budget, including carbon sequestration, are also important (Yan and Zhao, 2007).  

 Forest gap ABMs, such as JABOWA (Botkin et al., 1972) and the many forest ABMs 

that followed, have been used to predict forest succession, composition, and effects of 

environmental changes on forests. As has been pointed out (Purves et al., 2008), these models 

have successfully reproduced the species composition of old-growth, semi-natural forests. As 
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an example, (Ngugi et al., 2011) used the Ecosystem Dynamics Simulator (EDS), based on 

JABOWA, to project growth dynamics of remnant Australian brigalow forest communities. 

After parameterization of the model for 34 tree and shrub species, it was tested with 

independent long-term measurements. The model provided close approximation of the actual 

development trajectories of mature forests and the regrowth of thickets. This included 

projection of changes in species composition in remnant forests to within a 10% error. EDS 

projections between 1966 and 2005 (39 years) explained 89.3% of the observed basal area of 

the plots. In another case, an ABM was applied to understand forest succession of a 

monoculture of mangroves to try to understand the observed fact that annual stem wood 

production tends to decline after a certain age. The modeling was able to attribute the net loss 

with age to an imbalance of wood production due to higher death rate of larger trees that was 

not compensated for by greater growth of smaller trees (Berger et al., 2004). 

 Although the ability of ABMs to handle any degree of complexity is an advantage, it usually 

makes them analytically intractable. However, a simplified version of the forest gap ABM, called the 

perfect-plasticity approximation (PPA), was developed as a model of forest dynamics (Purves et al., 

2008). As in other ABMs, this approximation is based on individual tree parameters, including 

allometry, growth, and mortality, and uses height relationships in determining outcome of 

competition. But many other details are discarded, so that analytic predictions can be made. In that 

study, timing and magnitude of basal area dynamics and ecological succession on different soil types 

for eight common species in the US were found to be accurate, and predictions for the diameter 

distribution of 100-year- old stands were qualitatively correct in their shape. Another suggestion for 

dealing with the difficulty of fully analyzing large complex models, was proposal by Mony et al. 

(2011) of using volunteer computing in computational ecology to systematically browse the 

parameter space and analyze the simulation results. This technology will enable modelers to 
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proceed to large-scale landscape experiments that provide insight into ecological processes linked 

with plant ecology. 

 Despite the existence of some data that are sufficiently long-term to allow predictions 

to be tested for certain forest stands, such as those that are fast-growing, the fact that forest 

succession can take centuries to reach its final state is still a serious obstacle to model testing. 

For that reason, ‘space-for-time' substitutions are frequently used (Pickett, 1989). As an 

example, Clebsch and Busing (1989) empirically measured forests after 63 years of 

agricultural abandonment. Forest composition at 63 years was used as the starting condition 

for a particular forest gap succession simulator (FORET, Shugart et al. (1981)). The 

prediction of 300 years ahead closely matched the state of a nearby old-growth forest that 

was approximately that age.  

The economic importance of forests has led to abundant data on individual tree and stand 

growth for many commercially important species. For orchard tree species, sufficient data are 

available to parameterize FSPMs to accurately simulate such commercial species as orange 

trees (Qu et al., 2012), and peach trees (Grossman and DeJong, 1994).  But parameterization 

of models of diverse natural forests is difficult, as fewer data are available (Evans and 

Moustakas, 2016). New developments may ameliorate some of these limitations, as they 

require less data to upscale in a computationally efficient manner. The FSPM approach has 

also been applied to estimate crop production in general and in specific crops such as pepper 

(Ma et al., 2017), and wheat production (Evers et al., 2010), which may be more suitable than 

process-based models that do not take architecture into account, especially when competition 

for resources is important. 
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Spatial patterns and biodiversity 

 Spatially explicit models are able to simulate not only changes in tree community 

composition, but also the changing small-scale spatial arrangement of trees, as Busing (1991) 

demonstrated for 0.07 to 0.4 ha patches of deciduous forest. The model predicted nearest-neighbor 

distances well, though the simulated trees were more regularly spaced than the empirical stands 

with which they were compared. Ford and Diggle (1981) showed that in an even-aged plant 

monoculture, slight initial differences in height can be amplified by competition and lead to a 

bimodal distribution of trees, and thus a two-tiered stand structure that is commonly observed. The 

forest model by Ribbens et al. (1994) introduced a technique for calibrating a model of tree seedling 

dispersal and demonstrated the effect of spatial variation in seedling recruitment on forest 

dynamics. Using SORTIE, they were able to describe growth, probability of survival, recruit 

production, and resource density on a spatial domain. Earlier ABMs of forest dynamics made simple 

assumptions concerning seedling dependence on parent distribution. Ribbens et al. (1994) used data 

on the spatial distribution of parent trees, as well as transect data on seedlings in mixed stands. 

These data were used to calibrate and validate a seedling dispersal submodel.  Because this analysis 

showed that seedling establishment can be a limiting factor in forest dynamics, the authors next 

included their seedling submodel in SORTIE, and demonstrated that seedling recruitment limitation 

could significantly affect the dynamics of a forest.  

 Life cycle variation in traits provides possible mechanisms for maintaining biodiversity of 

plants in a biodiversity model by (Chave et al., 2002). Such mechanisms include (a) life history niche-

differentiation mediated by competitive trade-offs, (b) frequency dependence due to species-

specific pests, (c) recruitment limitation due to localized dispersal, and (d) a speciation-extinction 

dynamic equilibrium mediated by stochastic drift. The relative importance of these mechanisms was 

assessed using a spatially explicit ABM with individual-level processes of birth, death, speciation, 

dispersal and immigration from outside a 4096 x 4096 m lattice. Community-level patterns, such as 

species-area curves, relative-abundance distributions, and spatial distributions were extracted from 
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the simulation output and compared with those in real communities. All mechanisms studied 

contributed to species richness, but only (a) and (b) produced robust coexistence. The scale of 

dispersal was the most important factor affecting species area curves (steep at small scales, then 

shallower, and finally steep across large scales). The model was successful because of its unifying 

nature in explaining many spatial patterns.  Kolobov and Frisman (2016a) showed the importance of 

disturbances in maintaining diversity in and East Asian forest. Parrott and Lange (2004) used the 

model WIST to study such complexity more generally. Mailly et al. (2000) used the spatially explicit 

model, DRYADES, for the coniferous forest of North America. 

 Biodiversity has value also for agro-ecosystems, where mixed species, or intercropping, is 

widely used (Vandermeer, 1992). The use of FSPM for mixed-species was reviewed by Evers et al. 

(2019), Gaudio et al. (2019). The advantage of FSPM for such models is that the competition or 

complementarity between species can emerge as an outcome of their individual interactions with 

light and nutrient environments, rather than being imposed as extra equations for competition. 

FSPM can in principle be used to explore optimal combinations of plants for use in mixed-species 

agriculture or agro-forestry. A step in this direction is the Virtual Grassland model of Louarn et al. 

(2020). The model was designed to test the overyielding (additional yield of mixed crops over 

monoculture). The model showed that highest  overyielding was found when there was high trait 

divergence in light and nitrogen acquisition between N-fixers (legumes) and the second crop. 

 ABMs reveal aspects of the relationships of local and regional level processes that were not 

seen in simpler models. In an example of a non-forest model, Weiss et al. (2014) simulated grassland 

plant functional types on a lattice model of 1 cm2 cells to identify the drivers of species diversity. By 

accounting only for local plant interactions and local seed dispersal, the model captured observed 

levels of community diversity and productivity, as well as their response to gradients of resource 

availability and grazing intensity. The non-intuitive result emerged that increasing regional seed 

dispersal decreased the ability of the model to simulate empirical data.  

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa043/5805513 by Edm
on Low

 Library, O
klahom

a State U
niversity user on 19 M

arch 2020



Acc
ep

ted
 M

an
us

cri
pt

 

25 

 

Changes in communities along gradients 

 Ecotones, or transitions between different vegetation types, are a particular type of spatial 

pattern that often exist along environmental gradients and can often be explained by the changes in 

certain environmental factors such as precipitation and temperature. However, some ecotones are 

far sharper than can be explained by the more gradual changes in the underlying gradient. There can 

be various explanations for such sharp ecotones, and ABMs can help quantify these explanations. 

 Because altitudinal climate gradients are much sharper than latitudinal gradients and thus 

altitudinal ecotones are easier to study, they have been the focus of much study, including modeling. 

Using an individual-based simulation model (FORET), Shugart et al. (1980) simulated a beech-to-

yellow poplar transition along elevational gradients in which there was change of both mean annual 

temperature and growing degree days. They showed that a sharp transition occurred from American 

beech to yellow poplar as either of these factors increased (thus from higher to lower elevation). The 

competition for light between the two species played a role, where beech had an advantage in that 

respect, but the faster growing yellow poplar could outgrow beech at lower elevations. The authors 

showed that, in the simulations, a property of alternative stable states, hysteresis, occurred; that is, 

once one vegetation type was established, a large change in temperature was needed in the mode 

to reestablish the other type.  

 The well-known alpine tree line, which marks the altitudinal limit of tree growth, is 

characterized by an ecotone from upright closed canopy forest to tundra. This can sometimes be 

very abrupt (Alftine and Malanson, 2004). Both temperature and wind are major factors in 

determining the tree line (Bunn et al., 2005), inhibiting seedling and tree survival, thus preventing 

movement into tundra zones. However, trees that occur in groups can act to shelter each other from 

wind, so survival is enhanced. Alftine and Malanson (2004) studied the treeline on Lee Ridge, Glacier 

National Park, Montana, and showed that the wind there has a net directionality, so a seedling has a 

higher chance of survival in an area slightly downwind of a tree. Those authors built that effect into a 
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CA simulation model and, using it, were able to show that the mechanism of mutual sheltering could 

explain much of the structure of the tree line ecotone on Lee Ridge. Another landscape model, 

LandClim, scaling up from individual-tree growth, was used to simulate alpine community zonation 

with elevation (Elkin et al., 2012). A key point made by the authors is that the exact way fine-scale 

effects, such as the way individual tree growth is modeled, are important. The authors showed, for 

example, that a high disturbance rate favors Larix species at high elevations.  

 In a study of a climatic transition zone in southwestern USA, a gap dynamics model was used 

to examine the relationship between plant life history traits and patterns in dominance and 

composition at a grassland–shrubland transition zone in order to predict shifts in dominance with 

directional changes in climate. The model, ECOTONE, simulates belowground resources and dynamic 

individual plant root distribution. This work demonstrated that ABM approach is capable of 

representing complex interactions among herbaceous and woody species as well as between 

congeneric species with different life history traits at a biome transition zone (Peters, 2002).  

 Part of the explanation for these sharp ecotones may be the strong competition between 

the types, to create a sharper transition between types than would be explained by environmental 

gradients alone. This can happen if each vegetation type affects its local environment in a way that 

favors itself, through building soil, stabilizing nutrient availability, moderating temperature, changing 

soil pH, adding structure, and changing conditions in many other ways (e.g., Callaway (1995)). This 

occurs during the plant successional process, in which there is a sequence of changing dominant 

plant types or species in a given place following a disturbance; e.g., old-field succession following 

abandonment of cultivated land. This ability of vegetation to alter its local environment can create 

spatial patterns, as well as to form much sharper boundaries between two vegetation types than the 

gradual changes in the externally imposed environmental conditions.  

Another example of formation of a sharp ecotone is where there are gradients in salinity of ground 

water. This can occur in both coastal zones and inland areas where salt pans exist. Sharp ecotones 
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can be formed between halophytic (salinity-tolerant) and glycophytic (salinity-intolerant) vegetation 

(e.g., (Burchill and Kenkel, 1991, Grosshans and Kenkel, 1997, Jiang et al., 2014, Jiang et al., 2012a, 

Sternberg et al., 2007, Teh et al., 2008).  This appears again to be a case where positive feedbacks 

between each vegetation type and certain abiotic conditions create the boundary. For example, in 

southern Florida, mangrove communities and tropical hardwood hammock communities (with 

species such as Quercus virginiana, Lysiloma bahamensis, Bursera simaruba, etc.) can form sharp 

boundaries when they occur in proximity to each other. The hammocks are restricted to areas with 

salinities below 7 parts per thousand (ppt), but mangroves are able to tolerate a wide range of 

salinities (Ross et al., 1992, Sternberg et al., 2007, Sternberg and Swart, 1987), so they can compete 

for space with the hardwood hammock species. The sharp boundary between the vegetation types is 

accompanied by a sharp difference in vadose (unsaturated soil) zone salinity level, even though 

there is only a gradual change in the underlying ground water salinity. Jiang et al. (2012b) used an 

ABM to simulate the mangrove-hardwood hammock interaction, including effects of gradually 

varying ground water salinity, precipitation, and tides. In the presence of these effects, the 

combination of salinity gradient and vegetation positive feedback created a sharp boundary.  

 Although the results described here matched empirical observations, the models were based 

on simple empirical data, and need to be extended to include physiological detail to better 

understand how plants and abiotic resources interact to produce change along gradients. The FSPM 

approach has an opportunity here. To our knowledge, FSPMs have rarely been used to simulate 

plants along environmental gradients. However, Bornhofen et al. (2011) used an FSPM to study plant 

evolution along gradients of both stress (low nutrients) and disturbance. Over evolutionary time, the 

mutable physiological traits evolved towards the three general strategy types of Grime’s (1977) 

competitor-stress tolerant-ruderal theory. Another interesting study of plant-soil interactions in a 

heterogeneous environment was done using various simulated root system architectures (RSMs) by 

Draye et al. (2010). The authors show that under suboptimal water conditions, water uptake to 
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plants is a function of external water supply, soil hydraulic conductivity, and the plants’ RSM. This 

approach could be useful in projecting changes in plant growth along resource gradients. 

Effects of global change 

 Global changes over the coming decades are expected to initiate large changes in the types 

of vegetation cover in different places across the earth. A number of studies have applied ABMs to 

attempt to project the changes in vegetation due to climate change (e.g., Botkin (1993), Fischer et al. 

(2014), He and Mladenoff (1999), Ma et al. (2017), Miller and Urban (1999), Shugart and Smith 

(1996), Solomon (1986)), including using ABMs to help estimate the relative importance of tree age, 

size, and competition in studies of previous climate change using tree rings (Rozas, 2015). 

 One of the areas where temperature increase may precipitate important vegetation change 

is the vast boreal forest of Siberia. In particular, areas of this forest that are now covered with 

deciduous larch (Larix spp.) have been hypothesized to potentially shift to dominance by more 

temperature tolerant spruce (Picea spp) and fir (Abies spp.) species. Because larch is deciduous, it 

sheds leaves in the winter, so that the land surface is generally white, due to snow, and has high 

albedo. Evergreen spruces and firs, on the other hand, do not shed their foliage, and thus have lower 

albedo. Thus, such a species shift would affect climate. Shuman et al. (2011) applied a version of a 

gap ABM specialized to East Asian forests, FAREAST, to project through simulations the possible 

transition of larch forests in Siberia to spruce and fir. FAREAST was run on 372 sites in Siberia and the 

Russian Far East. It incorporated monthly climate parameters and data on soil characteristics at each 

site. It simulated 58 different tree species, including those of the three genera of interest, in 

different communities across the region. Scenarios involved different assumed changes in 

temperature and precipitation, including a linear 4 °C increase in temperature over the time period 

of the simulations. The model showed some geographic variation in the response of the vegetation 

communities. There was a strong shift from larch to evergreen conifers in the low species diversity 

geographic areas, but a lesser response in high diversity areas. In some areas where change is 
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projected, it was shown to occur rapidly, through collapse of the larch community. The decrease in 

albedo resulting from the vegetation shift was projected to lead to increased regional warming.  

 Future changes in species distributions will occur due to changes in temperature and 

precipitation, as indicated above (Zhang et al., 2019). But how fast they will change is not easy to 

answer. Species distribution models (SDMs) can project potential equilibrium species distribution 

based on climatic variables, but climate may change faster than a species population, limited by 

dispersal rates, can stay in equilibrium with the changing climate conditions. Martinez et al. (2012) 

used a spatially explicit ABM for tree-line dynamics to estimate how fast a pine species, Pinus 

uncinata, could migrate in elevation, given estimates of future changes in temperature, and what its 

extinction rate would be in its current lower elevations. They found that, while SDMs accurately 

described the current distribution of the species, the ABM projection for year 2100 was only about 

half the possible habitat area estimated by SDM, the difference in part being due to the ABM’s 

taking into account competition across the changing range. 

 Global change will have various types of indirect effects through its impact on forests, and 

these can also be projected by ABM. For example, plants release volatile organic compounds (VOCs) 

that affect air quality. Wang et al. (2018) used an ABM to study possible effects of increased 

temperatures on release of forest VOC emissions at the individual tree level, including ecological 

competition among the individuals of differing size and age, and radiative transfer and leaf function 

through the canopy. They found that climate warming only sometimes stimulates isoprene 

emissions (the single largest source of non-methane hydrocarbon) in a southeastern U.S. forest 

(Wang et al., 2018).  

 Along with changes in climatic variables, there will be a unidirectional change in atmospheric 

CO2.  This has prompted modeling of changes to primary production, which could potentially 

increase along with increased CO2, bringing with it the possibility of increased terrestrial carbon 

storage. The extent to which a concomitant increase can occur is not straightforward, however, as 
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other factors, such as nitrogen, may become limiting to the increased growth that CO2 can stimulate. 

Risk et al. (2014) simulated both C and N using a community of plant functional types in a patch-

sized ABM. Assuming projected trends in CO2 and temperature increase, as well as the effect of 

increases in N mineralization due to warmer soil, the authors’ model projects a slight increase in the 

rate of C sequestration, compared with decreased sequestration in some previous studies. 

Invading weedy species, pest and beneficial insect species, and epidemics 

 Biological invasions are a leading cause of recent extinctions (Bellard et al., 2016, Clavero 

and Garcia-Berthou, 2005), and are becoming increasingly common with the accelerating impact of 

anthropogenic climate change, habitat alteration, species introductions, and their combination 

(Simberloff et al. 2013). ABMs have been used not only to predict the long-term dynamic of invasive 

plant species, but also to take account of the native community in the model (e.g. Krug et al. (2009), 

Maines et al. (2013)). In addition, environmental factors, such as soils and climatic conditions, can 

also be included in simulating invasive species dynamics (Goslee et al., 2001, Higgins et al., 1996). 

The effects of herbivory on plant succession and production have been studied using ABM (e.g., Dyer 

and Shugart (1992), Seagle and Liang (2001)), so it is reasonable to apply ABM to the study of 

biocontrol of weedy plants. 

 As an example, a serious problem in southern Florida is the invasion of Melaleuca 

quinquenervia (Cav.) Blake (hereafter melaleuca), which is a tree from Australia that has spread over 

the freshwater ecosystems of southern Florida, displacing native vegetation, and thus threatening 

native biodiversity. A program to suppress melaleuca, begun in 1997 with insect herbivore agents, 

including the melaleuca weevil Oxyops vitiosa Pascoe and the psyllid Boreioglycaspis melaleucae 

Moore (Meyerson and Mooney, 2007, Tipping et al., 2009, Tipping et al., 2008, Center et al., 2012) 

appears to be highly successful where applied. The combined effects of these herbivores cause 

losses of leaves, forcing melaleuca to switch resource allocation from seed production to production 

of new, often unseasonal growth (Tipping et al., 2008). Field studies (Tipping et al., 2009) show that 
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melaleuca weevils attack new lead tissue preferentially and relentlessly, thereby contributing to 

continuous defoliation and re-foliation cycles.  

However, the extent to which melaleuca can be controlled to low levels, primarily through 

biocontrol, is important to estimate, because of the costs of mechanical and chemical methods. Also, 

what the long-term recovery of native plant communities will be as melaleuca is gradually 

suppressed remains unknown. Therefore, predicting the efficacy of control on invading species such 

as melaleuca is of current interest because of the ecological and environmental damage of many 

invading species. (Zhang et al., 2017) used JABOWA to project likely future changes in plant 

communities, by simulating successional processes occurring in two types of southern Florida 

habitat, cypress swamp and bay swamp, occupied by native species and melaleuca, with the impact 

of insect herbivores. Modeling is possible because a substantial amount of information is available 

on the melaleuca and stand dynamics for the period prior to the release of insect herbivores 

(Rayamajhi et al., 2008, Rayamajhi et al., 2010).  

 Computer simulations show melaleuca invasion leads to decreases in density and basal area 

of native species in the two swamps, but that herbivory would effectively control melaleuca to low 

levels, resulting in a recovery of native species. The results suggest the introduction of insect 

herbivory appears sufficient to suppress melaleuca over the long term and major native species may 

show substantial recovery within about 50 years. 

 ABM is important in modeling the interaction of various insects, both useful and harmful, 

with plants, as ABMs can simulate the configurations of plants. For example, Dupont et al. (2014) 

followed the movements and flower visits of marked bumblebee individuals within a population of 

thistle plants in a 50 × 50 m study plot. Their individual-based and animal-centered approach of 

sampling ecological networks provided new insights on incorporating foraging behavior and trait 

variation into spatial analyses of plant–animal interactions. Dattilo et al. (2014) structured an 
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individual based ant-plant network to evaluate the importance of considering nocturnal records in 

ant-plant network sampling design.  

 Plant pathogens and pest herbivorous insects act on a finer scale than the whole plant, so 

that understanding and controlling them may be greatly aided by FSPMs. Garin et al. (2014) created 

a generic ‘fungal foliar pathosystem’ as a framework for modeling both the plant and the 

development of the parasite population. The model consists of plants and their organs in 3-D space. 

The geometric configurations of the tissues and their properties determines their exposure to 

pathogens. The infection cycle of the fungal pathogens and their spread of spores are simulated as 

well. The authors applied their model to septoria leaf blotch of wheat and grapevine powdery 

mildew of grape orchards.  

 Insect movements are also influenced by plant architecture, along with light and 

microclimate variation, although the patterns are not well understood. Wang et al. (2016) developed 

a model for fruit flies, and applied it to the apple maggot fly in an apple tree canopy. Model 

simulations were shown to be consistent with empirical observations of the flies’ movement 

patterns on the plant. Models of this type can be used in making predictions and save time and 

resources for control of these pest insects that would otherwise have to rely on expensive empirical 

studies. 

Theoretical models 

 In a review ABM, Grimm (1999) distinguished between ‘pragmatic’ and ‘paradigmatic’ 

models, where pragmatic models, such as those reviewed above, address applied problems, 

whereas paradigmatic models are aimed at theoretical understanding. Grimm noted that by 1999, 

pragmatic ABMs far outnumbered paradigmatic ABMs. We will not consider paradigmatic models in 

this review except to list a few that have been developed over the past 12 years (Table 2).  
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DISCUSSION 

Altogether, plant ABMs cover a huge range of styles, levels of detail, and applications, and so there is 

no easy way to sort these out along a small number of axes. However, all ABMs can be viewed in 

terms of two spatial scales, their scale of spatial resolution and the scale of spatial extent. Resolution 

here refers to the smallest spatial area needed in the model, while extent refers to the size of the 

area to which the model is being applied. Figure 1 classifies models into five general groups, starting 

with FSPMs (1) at the lowest spatial scales of resolution and extent. Although population models are 

all based on characteristics of individual trees, non-spatial gap ABMs (2), because they average over 

plant interactions, have both resolution and extent roughly around 0.01 to 0.08, while spatially 

explicit gap ABMs (3) use finer resolution and often greater extent. Landscape ABMs usually link 

together many gap models and make some simplifications. Regional ABMs extract information on 

plant interactions from fine spatial scale models but integrate these into models that spatial cells 

with resolutions such as 1⁰ x 1⁰ or about 12,000 km2. This spatial perspective on ABMs shows that 

together they cover spatial scales from plant metamers to the globe. 

In disciplinary terms, ABM for individual plants (FSPM) and for population and community 

level modeling (population-level ABM) have developed largely independently as distinct scientific 

programs.  However, in terms of their methodologies and objectives, it may be more appropriate to 

consider them as occupying ranges along a continuum of spatial and mechanistic detail, with 

substantial overlap. One aspect of the continuum is the level of detail with which growth and 

competition are modeled. For example, plant growth rates are described by allometric equations in 

JABOWA, as whole-plant process models in, for example, Maréchaux and Chave (2017), as multi-

organ process models in, for example, Pretzsch et al. (2008), and finally as 3-D plant architecture at 

the mechanistically detailed end of the continuum. Plant competition is similarly described by a 

spectrum of methods, from coarse to detailed. At one end, competition is determined by height 

differences averaged over 0.01 ha in JABOWA, in spatially explicit models by increasingly detail fixed-
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radius neighborhood models, zones of influence, and field-of-neighborhood models, and finally to 

fine-scale competition for light and nutrients at the scale of leaves and roots in FSPMs.  

 Overlapping of objective was seen in the survey of several types of applications, which 

showed that population-level ABMs and FSPMs are addressing some of the same issues of primary 

production, biodiversity, spatial heterogeneity, and pest problems, although at different spatial 

scales.  Even where obvious differences between the population-level ABMs and FSPMs occure, it is 

not complete.  For example, although FTPMs do not deal with population growth through seed 

dispersal, they do simulate fruit and thus fecundity. 

 Despite this near continuum of model mechanisms and applications, there are distinctions 

between the practice of modeling at the population and community scale and at the scale of plant 

architecture. This may be due to a few factors. One is the disciplinary border that can exist between 

academic departments of ‘botany’ and ‘ecology and evolutionary biology’. Also, the complexity and 

computational intensity of modeling 3-D plant architecture may inhibit expansion to the larger 

spatial scale problems that ecologists deal with. Even though FSPMs have been developed to deal 

with many of the same issues as population-level ABMs, it does not yet seem possible 

computationally to extend them to landscapes. In addition, there are basic differences between 

individual plants and plant communities. Plants have internal integration and signaling between 

organs, while plant communities, despite some ‘superorganism’ theories in the early history of 

ecology, are importantly made up of individualistic plants within individualistic species.  

 Nevertheless, it is possible that the time is right to make use of the complementarity of the 

approaches to facilitate overall progress in ABM. One sign is that modeling methodologies such as 

Overview, Design and Details (Grimm et al., 2010) and pattern-oriented modeling (Grimm et al., 

2005) are being adopted in some FSPM papers (e.g., Garin et al. (2014)). 

 The need for convergence of the approaches is clear in much of the review literature. A 

review of models for forecasting effects of climate change (Botkin et al., 2007) pointed out the need 
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for adding mechanistic details of plant physiology, including plasticity of responses to temperature 

and disturbance, response, and life history trade-offs, or, alternatively for improving the models’ 

empirical basis (Botkin et al., 2007, Loehle, 2000, Norby et al., 2001). Along these lines, although it is 

difficult to extend FSPMs to large spatial scales, it may be possible, for example, to use them at the 

0.01 ha scale to compare results with current gap models. We are not aware of any current 

extensions of FSPMs to that scale, but it would be interesting to compare FSPM-based modeling 

with current spatially explicit community level ABMs at that scale. 

Jeltsch et al. (2008) assessed the overall state of plant population modeling, particularly in 

comparing the bottom-up mechanistic approach of ABMs with the more top-down approaches such 

as DGVMs (Longo et al., 2018), climatic envelope models (CEM) (McKenney et al., 2007) and species 

distribution models (Guisan and Thuiller, 2005). Such correlative models as CEMs and SDMs are 

easier to parameterize and validate, making them an seem an attractive alternative to detailed 

mechanistic models and shift interest away from ABMs as a way of forecasting effects of climate 

change, etc. It should be admitted that these ABM may not be the appropriate method for every 

issue in plant biology and ecology, particularly at the global level, where more aggregated models 

are simpler and easier to parameterize. However, ABMs have advantages that will make them 

relevant to certain types of problems, particularly where plant-plant interactions are important, and 

these are places where progress can be focused. Jeltsch et al. (2008) discussed three general areas 

where progress will be key to increasing the relevance of ABMs to important environmental issues. 

One is that of scaling up from individual plants to large scales. Some progress is being made in this 

area, as in modeling of Mladenoff (2004) and Reynolds (2002). Also, despite the advantages of top-

down models such as DGVMs mentioned above, those models rely on the assumption that processes 

at large scales have the same functional forms as those at small scales (Shugart et al., 2018). Those 

authors argue that, in parallel with models like the DGVMs, multiple local ABMs be used to simulate 

changes in forest structure, where they have the advantage, under the constraints that the 
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productivities be consistent with DGVMs, where those models have the advantage of integrating 

biogeochemical and physiological constraints (see also, Morin and Thuiller (2009)). 

 A second area where progress is needed is in the assembly and availability of data to 

parameterize and test models, because lack of data has been a bottleneck for modeling large 

numbers of species. The TRY initiative (Kattge et al., 2011) and LEDA (Kleyer et al., 2008) are 

examples of this effort. TRY is compiling plant trait data from the different aspects of plant 

functioning on global scale. Traits of vegetation in Northwest Europe are included in LEDA.  

 The third area of progress that is called for by Jeltsch et al. (2008) is generalization across 

species-plant functional-type population models. Plant functional types (PFTs), as noted earlier, are 

used in DGVMs to replace species by a smaller number of functional types, which greatly reduces the 

data needed to parameterize the models and can relate them to basic physiological traits. But such 

aggregated models are not suited to capture ecological processes like competition. Jeltsch et al. 

suggest extending the features of functional types to ‘functional species’, or virtual species that fill 

the whole trait space. Recent models, such as Maréchaux and Chave (2017) do this and so represent 

a likely future for further development of ABMs for application to landscape and global problems. 

 Finally, Jeltsch et al. (2008) emphasize the need for moving towards a more unified science 

of forecasting using models. The proliferation of ABMs has not been accompanied as well as needed 

by underlying theory, although some methodological advances, such as unified methods of 

describing ABMs (Grimm et al., 2010) have gained wide acceptance. Concepts such as ‘pattern-

oriented modeling’ (Grimm et al., 2005) may be one way to standardize the development and 

testing of ABMs. But it is also important that tools, such as Hierarchical Bayesian statistics, which can 

enable model testing in a rigorous way, need to be extended from simple models to complex ABMs. 

Greater interdisciplinary collaboration between population and community level ABM and FSPM 

modelers could facilitate than kind of unified science. 
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 Future progress will continue to be made in ABM through greater ability to obtain data at 

the individual plant level, greater computer capacity for increasing detail at the individual level and 

increasing spatial scale, and increasing availability of modeling packages for population ABMs (e.g., 

Falster et al. (2016)) and for FSPM (Qu et al., 2012). Several directions include developing a spatially 

explicit trait-based ABM of microbes (Allison, 2012), considering dispersal and demography in spatial 

population models for conservation and control management (Jongejans et al., 2008), and 

applications in landuse change (Verburg, 2006). It should also be noted that there is an increasing 

interest of integrating analytical and ABM model together because the two approaches offer 

different, but complementary, advantages and combining the two together can facilitate the 

understanding of plant ecology (Travis et al., 2011). It is also crucial to integrate biodiversity and the 

ecosystem in plant ecology. As stated in Grimm et al. (2017), the next-generation scientists should 

include the individual-based approach in their toolkit and focus on addressing real systems via 

developing theory for individual behaviors just detailed enough to reproduce and explain patterns 

observed at the system level. If some or all of these trends can be accelerated, the next decade in 

plant ABM will be very exciting. 
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Figures 

 

Figure 1.  Types of ABMs with the ranges of spatial extent and resolution. (1) Functional Structural 

Plant Models (FSPMs); e.g., PEACH (Grossman and DeJong, 1994), Tomato model (Sarlikioti et al., 

2011).  (2) FSPMs with plant-plant interactions; e.g. PLATHO (Gayler et al., 2006), Virtual Grassland 

(Louarn et al., 20200, ROOTMAP (Diggle, 1988) (3) Gap Phase Models; e.g., JABOWA (Botkin et al., 

1972), FORET (Shugart and West, 1977), LINKAGES (Post and Pastor, 1996), FORMAN (Chen and 

Twilley, 1998), EDS (Ngugi et al., 2011), FORCLIM (Bugmann and Solomon, 2000).  (4) Spatially 

Explicit Forest Models; e.g., SORTIE (Pacala et al., 1996), MANGRO (Berger et al., 2008), TROLL 

(Maréchaux and Chave, 2017). (5) Landscape Models (linking gap models); ZELIG (Miller and Urban, 

1999) , LANDIS (Mladenoff, 2004),  FORMIND (Kohler and Huth, 1998),, TREEGRASS (Simioni et al., 

2000), PSS (Fennel et al., 2012). (6) Regional Models; e.g., SEIB-DDVM (Sato et al., 2007), ED 

(Moorcroft et al., 2001) 
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Table 1.  Agent-based modeling used to address species and/or applied ecology questions (published 

since 2006). 

 

Plant intercropping (Gaudio et al., 2019) 

Orange tree structure-function modeling (Qu et al., 2012) 

Forest management; Araucaria angustofolia in Brazil (Valeriano et al., 2014) 

Competition and tree growth; Cryptomeria japonica 
in Japanese plantation 

(Inoue et al., 2008) 

Forest restoration for diversity in Australia (Ngugi et al., 2011) 

Effects of agricultural landscape on aphid dynamics (Perry and Millington, 2008) 

Effects of control on a pest carabid beetle (Topping and Lagisz, 2012) 

Estimating cost/benefit of weed control (Steel et al., 2014) 

Forest management; effects of frequency of 
prescribed burning 

(Karsai et al., 2016) 

Integrated pest management strategies; banana 
weevil 

(Vinatier et al., 2012) 

Prediction of range expansion of invasive species (Travis et al., 2011) 

Prediction of effects of climate change on alpine 
plants 

(Cotto et al., 2017) 

Predicting invasive plant dispersal; Gunnera tinctorial 
in Ireland 

(Fennell et al., 2012) 

Predicting effect of dispersal limitation of species 
under climate change; Pinus uncinate in Pyrenees 

(Martinez et al., 2012) 

Deforestation in Yucatan, reforestation Midwest 
United States 

(Manson and Evans, 2007) 

Grassland management; claspleaf pennycress, 
southern Germany 

(Pagel et al., 2008) 

Growth of wetland sedges, southeast Michigan (Wildova et al., 2007) 

Succession in Oregon forest landscapes (Busing, 1991) 

Invading Giant Hogweed (Nehrbass and Winkler, 2007) 

Phenotypic plasticity; black alder (Reuter et al., 2008) 

Alpine tree line;  Austrian central Alps (Wallentin et al., 2008) 

Light interception in the canopy; tomatoes (Sarlikioti et al., 2011) 

Leaf inclination effects in wheat stands (Barillot et al., 2019) 
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Table 2.  Agent-based modeling used to address theoretical ecology questions (published since 

2006). 

 

Plant-soil feedback effects on evolution of plant traits (Schweitzer et al., 2014) 

Estimating tropical forest productivity  (Fyllas et al., 2014) 

Niche vs. neutral theory (Adler et al., 2010) 

Explaining plant community patterns (Brown et al., 2016) 

Effects of root herbivory on grassland plant 
coexistence 

(Pfestorf et al., 2016) 

Factors affecting local adaptation at margins of a 
population’s range 

(Bridle et al., 2010) 

Predicting spread of an invasive plant (Travis et al., 2011) 

Testing predictions of metabolic scaling theory (Lin et al., 2013) 

Vegetation self-organizing patterns in space (Vincenot et al., 2016) 

Carbon allocation and plant allometry (Dybzinski et al., 2011) 

Plant-pollinator networks (Dupont et al., 2014) 

Tree-morphological plasticity (Strigul et al., 2008) 

Filtering and competition in assembly of tree sapling 
communities 

(Carlucci et al., 2012) 

Clonal growth and competition (Bittebiere et al., 2012, Mony et al., 2011, 
Wang et al., 2016, Wong et al., 2011) 

Individual plant growth in heterogeneous 
environment 

(Qu et al., 2010) 

Herbivorous insect-plant interactions (Wang et al., 2016) 

Population resilience to disturbances (Pena-Alzate and Barriga, 2017) 

Factors affecting plant competition (Boyden et al., 2008) 

Ecotone formation (Jiang et al., 2012b, Wiegand et al., 2006) 

Plant morphogenesis (Louarn and Faverjon, 2018) 

Tree dynamics in savanna (Calabrese et al., 2010) 

Root-soil interactions (Dunbabin et al., 2013) 

Estimating effective plant dispersal distance (Anand and Langille, 2010) 

Grassland community yield and stoichometry (Faverjon et al., 2019) 

Tropical tree diversity (Maréchaux and Chave, 2017) 

Grazing effects on plant diversity; belowground 
competition 

(May et al., 2009) 

Post-fire succession in shrubland/grassland (Chakraborty and Li, 2009) 

Aboveground-belowground linked processes (van der Putten et al., 2009) 

Evolutionarily stable state plant height (Xiao et al., 2007) 

Plant growth under crowded conditions (Damgaard and Weiner, 2008) 

Mangrove forests (Berger et al., 2008) 

Competition; ABM to mathematical (Finkelshtein et al., 2009) 
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Figure 1 
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