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abstract: Stressors such as antibiotics, herbicides, and pollutants are
becoming increasingly common in the environment. The effects of
stressors on populations are typically studied in homogeneous, nonspa-
tial settings. However, most populations in nature are spatially distrib-
uted over environmentally heterogeneous landscapes with spatially re-
stricted dispersal. Little is known about the effects of stressors in these
more realistic settings. Here, we combine laboratory experiments with
novel mathematical theory to rigorously investigate how a stressor’s
physiological effect and spatial distribution interact with dispersal to in-
fluence population dynamics.We provemathematically that if a stressor
increases the death rate and/or simultaneously decreases the population
growth rate and yield, a homogeneous distribution of the stressor leads
to a lower total population size than if the same amount of the stressor
was heterogeneously distributed.We experimentally test this prediction
on spatially distributed populations of budding yeast (Saccharomy-
ces cerevisiae). We find that the antibiotic cycloheximide increases
the yeast death rate but reduces the growth rate and yield. Consistent
with our mathematical predictions, we observe that a homogeneous
spatial distribution of cycloheximide minimizes the total equilibrium
size of experimentalmetapopulations, with themagnitude of the effect
depending predictably on the dispersal rate and the geographic pattern
of antibiotic heterogeneity. Our study has implications for assessing
the population risk posed by pollutants, antibiotics, and global change
and for the rational design of strategies for employing toxins to control
pathogens and pests.

Keywords: consumer-resourcemodel, spatially heterogeneous param-
eters, patchy environment, laboratory experiments, spatial ecology,
movement ecology.

Introduction

Natural populations are often exposed to various environ-
mental stressors, that is, factors that negatively impact vital
rates. Stressors may be a natural part of the landscape or
may be introduced into the environment either accidentally
or deliberately by human activity (Tilman and Lehman
2001; Bond-Lamberty et al. 2014; Ha et al. 2014). A funda-
mental problem in ecology is determining how environ-
mental stressors influence population dynamics (Konopka
2009). Much laboratory work and fieldwork has quantified
the effects of stressors on individual vital rates, such asmor-
tality and fecundity (Lefebvre et al. 1999). Other work has
then quantified the effects of stressors on population dy-
namics in a single field or laboratory population (Hendriks
et al. 2005). However, much less is understood about the
effects of stressors at the global level (i.e., metapopulation,
defined as the sum of abundances of individuals over all
local populations), specifically when stressors are heteroge-
neously distributed over a species range (Spromberg et al.
1998; Fritsch et al. 2010; Genin et al. 2018).
Most stressors are heterogeneously distributed over a spe-

cies range. This is true, in particular, for anthropogenic
sources of stress, which include accidental (undesirable)
introductions into the environment and those stressors that
are deliberately introduced into the environment as a form
of species control. Industrial pollutants, for example, are un-
intentional by-products of human activity that are usually
spatially localized around their source (Solis-Weiss et al.
2004). Herbicides are deliberately introduced into the envi-
ronment to control pests. Applications of these agents are
usually not distributed uniformly over the pest species range,
though, because there are often budgetary constraints or po-
litical differences among regions where control is being
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applied that influence the level of application. For example,
measures to control the spread of infectious diseases such
as Zika andmalaria by reducingmosquito populations have
always been spatially restricted to particular regions of the
mosquito’s range (Ferguson et al. 2016).Meanwhile, the de-
liberate introduction of herbicides can have spillover effects
on nontarget species, as these agents spread via air (Yao et al.
2006) and run off into adjacent land and waterways (Hunt
et al. 2006). Thus, while some stressors, such as rising tem-
perature and CO2, are more likely to occur homogeneously
across space, at least on some spatial scales (Mann et al.
1998), anthropogenic stressors are often heterogeneously
distributed over the ranges of animal and plant species.
Spatial environmental heterogeneity greatly complicates

efforts to predict population dynamics (Reiners and Driese
2001; Van Dyken and Zhang 2019). For this reason, lit-
tle is known either theoretically or empirically about how
populations are influenced by the geographic distribution
of stressors. Predicting how populations will respond to
stressors is substantially complicated by the fact that most
species in nature live in populations with a spatially re-
stricted dispersal of individuals (Skellam 1951; Andow et al.
1993; Kot et al. 1996; Hastings et al. 2005). With spatially
restricted dispersal, individuals cannot disperse freely over
the entire spatial regions but rather are constrained by time,
energy, and movement ability such that the probability of
dispersing to nearby regions is higher than the probability
of dispersing to far away regions. Because of this spatially
restricted movement, an individual does not equally expe-
rience all environments over the species range. Thus, if the
environment is heterogeneous on a coarse scale (Levins
1968), individuals within a species will differ in their fitness
simply as a result of different environmental experiences.
Spatial regions may then vary in the number of individuals
they can support, creatingheterogeneity in populationden-
sity over space.
A growing body of theory based on patch equations

with logistic growth (eqq. [1]) has demonstrated that
the interaction between resource heterogeneity and dis-
persal in spatially structured populations can both quan-
titatively and qualitatively alter population dynamics
(Holt 1985; Freedman et al. 1987; Law et al. 2003; Lou
2006; Herbener et al. 2012):
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where U1 and U2 are the population size in patch 1 and 2,
respectively; r is the growth rate; K is the carrying capac-
ity; and D is the dispersal rate between the two patches.

Theory based on equations of this formpredicts that envi-
ronmental heterogeneity, as modeled by spatial variation in
the parameters r and/or K among patches, increases meta-
population abundance when individuals disperse among
patches (DeAngelis et al. 2016). This remarkable theoretical
result has been called a paradox (Arditi et al. 2015). How-
ever, the logistic equation is notwell suited tomapping phys-
iology, a biological/mechanistic feature, to the phenomeno-
logical parameters of r andK. In addition, the logistic model
does not disentangle the effects of fecundity and mortality
on population growth rate, as both effects are aggregated
into the composite parameter r (which equals births minus
deaths). Since stressors often act to either decrease repro-
duction or increase death (Hendriks et al. 2005) and since
deaths may result from density-independent or density-
dependent causes, the logistic model conflates all of these
effects, potentially concealing important distinctions.
As an alternative to the logistic approach, it has recently

beendemonstrated that a bottom-up approachwith ameta-
population of consumers utilizing explicit resources (Mac-
Arthur 1972; Tilman 1982) is more suitable for describing
the effects of environmental heterogeneity (Zhang et al.
2017). Specifically, when population growth is modeled
using a mechanistic, bottom-up approach with explicit re-
sources, the so-called paradox of heterogeneity vanishes
(Zhang et al. 2017; Ruiz-Herrera and Torres 2018). That is,
in direct contradiction to predictions based on the phenom-
enological spatial logistic equation (eqq. [1]), consumer-
resourcemodels predict that resource heterogeneity decreases
metapopulation size rather than increasing it. Experimen-
tal work by Zhang et al. (2017) confirmed the predictions
of the consumer-resource models, demonstrating empiri-
cally that the paradox did not occur in their experimental
system. However, this work has been restricted to a hetero-
geneity of resources that have a positive effect on growth,
whereas environmental stressors have a negative effect on
growth. Specifically, stressors can have alternative modes
of action, by which we mean that they can target different
components of fitness, reducing individual fertility, sur-
vival, and/or assimilation of resources. It therefore remains
an open question whether predictions based on mechanis-
tic bottom-up models of spatial populations with heteroge-
neity in stressors will differ from those made in previous
logistic-based models.
Therefore, here we develop novel mathematical theory

that we then test using high-throughput experiments on
spatially dispersing experimental metapopulations of the
budding yeast (Saccharomyces cerevisiae), subject to exper-
imental manipulation of the dispersal rate and the spatial
distribution of the amount of a stressor (specifically, the
antibiotic drug cycloheximide). This experimental system
has been shown to be a good empirical model for testing
ecological theory of spatially structured metapopulations
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(Zhang et al. 2017). Our goal then is first tomathematically
analyze a mechanistic consumer-resource model of spatial
metapopulation dynamics in environments with hetero-
geneous and homogenous distributions of a stressor (the
environment is otherwise homogeneous). We then use a
previously validated experimental setup (Sen Datta et al.
2013; Gandhi et al. 2016) to rigorously test our theoretical
predictions in carefully controlled laboratory conditions.
Ultimately, we ask: How does the spatial distribution of a
stressor interact with dispersal to determine the impact
of a stressor on metapopulation size?

Mathematical Theory

We model a randomly dispersing consumer metapopula-
tion occupying a one-dimensional spatial habitat composed
of n discrete, equal-sized patches.We assume that symmet-
ric dispersal occurs between neighboring patches except
for patches 1 and n at the ends, for which there is dispersal
only to patches 2 and n2 1, respectively. This is a linear
stepping-stone model (Wright 1943; Kimura and Weiss
1964). In the continuum limit, this population structure
can be conceptualized as spatial diffusion. Although sim-
plistic, the ability of linear diffusion and stepping-stonemod-
els to explain patterns in nature is now well established,
with good correspondence between models and data for
many natural populations (Skellam 1951; Andow et al. 1993;
Kot et al. 1996; Hastings et al. 2005).
We now superimpose this spatial setting onto a consumer-

resource model of local population dynamics. We assume
that growth of the consumermetapopulation is determined
by a single renewable limiting resource, which has the same
input rate at every patch in space. We model the effect of
a generic stressor, such as a chemical toxicant, as a nega-
tive effect on one or a combination of the parameters: the
asymptotic reproduction rate (or maximum population
growth rate) at infinite resources, rmax; the number of
consumers supported per unit resource (i.e., the yield), g;
or a positive effect on the density-independent death rate,
m, and the density-dependent death rate, g. We assume
that the effect of the stressor is linearly proportional to
the amount of stressor. The assumption of linear effects
on these parameters may be unrealistic in some cases but
nonetheless provides a valid first-order approximation.
These four parameter values can vary among patches, de-
termined by the local stressor amount. The model is de-
signed to apply to the experiments described below but
can be applied to stressors affecting populations on spatial
scales up to and including the landscape scale. But for those
larger scales, wemust assume that the increase inmortality
rate or the loss of growth rate is linearly proportional to the
amount of stressor. This may apply most appropriately to
a deliberately applied stressor. But it might not apply to

some pollutants; that is, as the concentration of a pollutant
decreases (or dilutes), its effect onmortality or growthmay
decrease at a greater than linear rate.
The spatial-temporal dynamics of the consumer-resource

system can be written in general n-patch form as follows
(see supplement 1; supplements 1–6 are available online
in the supplemental PDF):
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where Ui is the consumer (yeast) biomass in patch i, Ni is
the nutrient, KS is the half-saturation coefficient, D is the
dispersal rate, Ninput,i is the nutrient input, and h is the nu-
trient dilution rate. In equation (2a), for i p 1 and i p n,
dispersal occurs only with i p 2 and i p n2 1, respec-
tively. For ease of analysis, two submodels were analyzed
separately in Zhang et al. (2017) and here: model 1
(chemostat), for which h p 0, mi p 0, and gi 1 0 for all
i; and model 2, for which h p 1, mi 1 0, and gi p 0 for
all i (see supplement 1 for an explanation of the rationale
for the two models).
Using these models of a consumer and an exploitable re-

source in a spatial environment, we test whether a specific
amount of stressor that can reduce either rmax or g (or both
together) or that can increasem or g is more effective when
it occurs as homogeneously or heterogeneously distributed
among the patches. Effectiveness is measured by the ability
to minimize the metapopulation equilibrium total realized
asymptotic population abundance (TRAPA). We test this
for both a dispersing and a nondispersing population for
both models.
We analyze for effects of stressor on parameters rmax and

g for bothmodels as well as on g inmodel 1 andm inmodel
2. We assume that the effect of the stressor on each pa-
rameter in a given patch is proportional to the amount of
stressor in that patch. Suppose that there is some total
amount T that has an effect e(T). Then the effect on a given
generic parameter—say, yi—would be, for uniform applica-
tion in two patches (1 and 2) and assuming a negative effect,
y1 p y2 p yhomogeneous p ybaseline 2 ey(T=2), where ybaseline is
y in the absence of stressor. If the stressor is applied only
to patch 1, then y1 p ybaseline 2 ey(T) and y2 p ybaseline.
These are simple assumptions, but they can give at least
first-order results. For mathematical analysis and sim-
ulation it was more convenient to take yhomogeneous as the
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baseline, so that y1 p yhomogeneous 1 ey(T=2) and y2 p
yhomogeneous 2 ey(T=2).
We compare four basic situations regarding the effects

of the same total amount of stressor: (1) homogeneous
environment without dispersal, (2) homogeneous envi-
ronment with dispersal, (3) heterogeneous environment
without dispersal, and (4) heterogeneous environment
with dispersal on the total population abundance at
equilibrium (TRAPA). There are no losses of mortality
due to the dispersal itself. Note that we use the same
term for homogeneous environment with and without
dispersal (cases 1 and 2) because dispersal does not alter
TRAPA in the homogeneous environment (Zhang et al.
2017). We now define the four cases as TRAPAhomogeneous

(both case 1 and case 2), TRAPAheterogeneous,no dispersal (case
3), and TRAPAheterogeneous,dispersal (case 4). The objective
of the analysis is to determine the ordering of these in
terms of size for effects of stressor on each parameter.

Simulation Methods

We complement our experimental and analytical investiga-
tion with extensive simulations to explore a wider range of
parameter space than is available with either our experi-
mental system or mathematical techniques. In spatially ho-
mogeneous simulations, parameter values were identical in
each patch. Spatial heterogeneity was introduced by al-
lowing parameters (maximum growth rate [rmax], yield
[g], andmortality rate of the consumer [m]) to deviate from
homogeneity as described for the generic y above in “Math-
ematical Theory.” Variation was always discrete, with two
states. Themean of the two states corresponded to the value
used in the spatially homogeneous simulation. For example,
for variable rmax the spatially homogeneous value was
rmax p 0:35 in all patches, while in the spatially heteroge-
neous case patches alternated between rmax p 0:2 and
rmax p 0:5. Parameters vary among patches in either a cor-
related or an anticorrelated fashion. Positively correlated
parameters, such as rmax and g, were established with the re-
lationship xi p ayi, where x and y denote the parameters,
i denotes the patch, and a denotes a positive constant of
proportionality; for negatively correlated parameters, xi p
ayi11. Since variation alternates between adjacent patches,
the negative correlation is generated by pairing the high
value of one parameter with the low value of the other
within a patch.
To imitate the experiment, the simulations assumed pe-

riodic replenishment of nutrient and stressor (see “Ex-
perimental Methods” below). We compared the relative
relationships between TRAPAheterogeneous and TRAPAhomogeneous

across ranges of the nutrient input rate, Ninput, and the dis-
persal rate, D. Simulations were iterated for sufficiently long
to reach steady state. Spatially homogeneous and heteroge-

neous scenarios were implemented by modifying system
parameters as described above in “Mathematical Theory.”
Simulations were performed in Matlab R2018b (Mathworks
2018).

Experimental Methods

Following Zhang et al. (2017), we conduct experiments
using experimental metapopulations of the budding yeast
(Saccharomyces cerevisiae; fig. 1). Yeast is a widely used
experimental system that has the advantages of small size
(5 mm), fast generation time (90 min), and ease of cultur-
ing. Therefore, using yeast allows us to establish a large
number of replicate metapopulations in a very small space
(eight replicate 12-subpopulation metapopulations in a
single 4# 6-inch 96-well microtiter plate), to accurately
control nutrient and stressor environments, to accurately
control population structure (e.g., dispersal pattern and
rate), and to do all of this in a high-throughput setting over
a large number of generations (10/day) in a short time pe-
riod. In addition, yeasts and other fungi are important hu-
man pathogens that are widely treatedwith antibiotics, and
the Centers for Disease Control and Prevention lists drug-
resistant Candida, a yeast genus closely related to Saccha-
romyces, as a “serious threat” on its list of greatest antimi-
crobial resistance threats.

Strain and Culture Medium

We performed experiments with an auxotrophic, hap-
loid (MATa) strain of the budding yeast (S. cerevisiae).
This strain was constructed in the W303 background,
with MATa can1-100 hmlaD::BLE leu9D::KANMX6
trp2::NATMX4 (the strain was provided as a generous
gift from M. Muller and A. Murray; Muller et al. 2014).
This strain can synthesize all amino acids except trypto-
phan. The base growthmedium consisted of 0.74 g/L com-
plete synthetic medium minus tryptophan (Sunrise Sci-
ence), 44.04 mg/L tryptophan, and 20 g/L dextrose. All
reagents were added to the mixture and then autoclaved
for sterilization. Medium was supplemented with the anti-
prokaryotic antibiotics tetracycline and ampicillin (which
have no effect on yeast) to prevent bacterial contamination.
Depending on the treatment, we included varying concen-
trations of the macrolide eukaryotic antibiotic cyclohexi-
mide as the yeast stressor. Cycloheximide binds eukaryotic
ribosomes, inhibiting translation by interfering with trans-
lation elongation. The culture medium in all treatments
was identical (uniform nutrient environment) except for
potential differences in the average concentration or spa-
tial pattern of cycloheximide. Cultures were propagated
asexually.
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Establishment and Propagation of Spatial Populations

A single replicate population was established as one row of
12 wells in a round-bottom 96-microwell plate (Costar; see
fig. 1). Each subpopulation (well) contained 124 mL of liq-
uid growth medium, as described in the previous section,
with some wells supplemented with cycloheximide ac-
cording to treatment (see below).
Initial populations were established from a single over-

night culture inoculated from freezer stock into 5 mL of
YPD (20 g/L yeast extract, 10 g/L peptone, 20 g/L dextrose)
and incubated at 307C with constant agitation in a roller
drum shaker. The saturated culture was washed three times
with sterile water, and 124 mL of this culture was transferred
into each well of a 96-well plate and then diluted by a factor
of 210 using a Biomek FXP liquid-handling robot.
Every 24 h, the 96-well plate was shaken at 1,350 rpm on

a Titramax 1000 plate shaker to completely disperse the cell
pellets. We then measured population density using a
microplate photometer (Tecan Infinite M200 Pro) three

times, taking the average of these three technical replicates
to obtain the optical density at 660 nm (OD660) of each well.
Next, each plate was subjected to either a dispersal or

a nondispersal protocol, depending on treatment. Dis-
persal was implemented by taking a fraction of the total
volume in each well and dispersing equal volumes to
each of the two neighboring wells. As an example, con-
sider a 6% dispersal rate. For the dispersal protocol, 3%
volume was aspirated from each well in plate 1 and then
dispersed to the adjacent position to the left of plate 2,
which is a new empty plate, using the liquid-handling
robot. Another 3% volume was dispersed into the adja-
cent position to the right. Last, the remaining volume in
plate 1 was dispensed into plate 2 in the same position.
For the nondispersal protocol, the three transfer steps
were conducted exactly the same except that the total vol-
ume was dispersed to the same position from plate 1 to
plate 2. Note also that the two perimeter columns of the
plate (columns 1 and 12) received dispersed population
from only one adjacent column (for more details, see

Figure 1: Schematic figure of the dispersal protocol. A metapopulation is composed of 12 discrete patches/wells arranged in a linear spatial array
wherein dispersal occurs via random, bidirectional movement of a fraction of the population between nearest-neighbor patches, with reflecting
(zero-flux) boundary conditions. Taking the 6% dispersal rate as an example, in the dispersal treatment 6% yeast volume was aspirated from each
well in the original plate, and then 3% volume was dispensed to the adjacent well to the left as well as to the adjacent well to the right in the new
plate; in the nondispersal treatment, 3% yeast volume was aspirated from each well in the original plate and then dispensed to the same well in an
empty new plate twice. Last, in both treatments the remaining 94% yeast volume was dispensed to the same well in the new plate. After the
dispersal process, old medium was removed and refilled twice with fresh medium. The new plate with fresh yeast medium was looped back
to repeat the processes to reach the equilibrium point. White cells represent wells with 0 nM cycloheximide, and green ones represent wells with
1,350 nM cycloheximide. 1-1 Heterp alternating between 0 and 1,350 nM cycloheximide; 3-3 Heterp alternating between three wells of 0 and
1,350 nM cycloheximide; 6-6 Heter p alternating between six wells of 0 and 1,350 nM cycloheximide.
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fig. 1). To avoid medium dispersal along with the yeast
cells, after the dispersal process we washed cells twice by
centrifuging plate 2 at 2,400 rpm for 5 min, removing su-
pernatant and refilling with freshmediumusing the liquid-
handling robot. We repeated this twice. We then shook
the plate on a plate shaker for at least 1 min to completely
disperse the cell pellets and then incubated it unshaken at
307C for 24 h. Consequently, both nutrients and toxicant
were renewed in periodic pulses every 24 h. This passaging
and dispersal procedure was repeated for 11 days, at which
point the population densities for all treatments had ap-
proached an asymptote.
It is important to note that the experiment is necessarily

slightly different from our chemostat model (eqq. [2]).
Our experimental system imposes pulsed replenishment
of resources and stressor, whereas our theory makes the
standard assumption of continuous flow of resource and
stressor. The theoretical assumption is necessary for ana-
lytical tractability, while the experimental setup is neces-
sary for experimental tractability. Our simulations imitate
the experiment, with periodic replenishment. As we will
show in “Results,” the qualitative match of theory, exper-
iments, and simulation results indicates that the continu-
ous flow assumption of the theory is a good approxima-
tion to the experimental conditions.

Experimental Treatments

Our experiment was a full factorial design consisting of
three factors: dispersal rate (0% and 6%), average cyclohex-
imide concentration (675 and 1,000 nM), and spatial pat-
tern of cycloheximide (homogeneous, heterogeneous 1-1,
heterogeneous 3-3, and heterogeneous 6-6). We also tested
dispersal rates of 12% and 24% with the heterogeneous 1-1
configuration under both average cycloheximide concen-
trations (675 and 1,000 nM). Homogeneous treatments
had a uniform concentration of cycloheximide in each of
the 12 subpopulations. The heterogeneous 1-1 treatment al-
ternated between one well without cycloheximide (0 nM)
and one well with cycloheximide (1,350 or 2,000 nM; we
use the heterogeneous environment with alternation be-
tween 0 and 1,350 nM cycloheximide as an example to
demonstrate our experimental protocol in fig. 1); likewise,
heterogeneous 3-3 (or 6-6) treatments alternated between
three (or six) wells without cycloheximide and three (or
six) wells with cycloheximide (see fig. 1). Each treatment
was replicated four times.

Growth Parameter Estimation

Growth rate (r) follows theMonod equation, which depends
on the available amount of essential growth resource (tryp-
tophan) and specific growth parameters of rmax,KS, and yield

(Tilman 1982). The growth parameters rmax and KS were
estimated from the Monod equation generated from
growth curve measurements at varying levels of trypto-
phan (0.734, 3.67, 7.34, 14.68, 29.36, 44.04, 58.73, 73.4,
and 293.6 mg/L) and cycloheximide (0, 50, 200, 400,
675, 1,000, 1,350, and 2,000 nM) in all possible combina-
tions, with three replicates for each combination. We
used standard laboratory instruments (OD plate readers)
for measuring growth curves in batch culture. A round-
bottom 96-well plate with a factor of 210 initial dilution
was incubated in a Tecan Infinite M200 Pro plate reader
at 307C with constant orbital shaking at 280.8 rpm. Cell
density was measured by OD660 every 15 min until the
OD660 closely approached an asymptote (typically 24–72 h
depending on the growthmedium).
Each growth curve was fit to the standard logistic eq-

uation using custom fit in Matlab R2018b (Mathworks
2018) in order to estimate r (per capita growth rate when
the population is close to zero) for each growth condi-
tion when the yeast abundance grows to equilibrium. We
then used aMonod equation to fit the relationship between
tryptophan concentrations and growth rate (r) to esti-
mate rmax andKS at a cycloheximide concentration between
0 and 675 nM. The Monod equation is r p rmax#
[tryptophan]=(KS 1 [tryptophan]), where rmax is the as-
ymptotic growth rate under infinite resources (refer to
rmax,i in eq. [2a]), [tryptophan] is the initial tryptophan
concentration (refer to Ni in eq. [2a]), and KS is the half-
saturation coefficient (refer to KS in eq. [2a]), defined as
the value of [tryptophan] where r p rmax=2. Note that
the estimation of rmax and KS at higher cycloheximide con-
centrations (1675 nM) was not accurate enough because
we had very low yeast growth at higher cycloheximide
concentrations so that the accuracy of curve fitting was
affected. Therefore, at higher cycloheximide concentra-
tions (1675 nM) rmax was estimated as the r at the trypto-
phan concentration where yeast growth was not further
limited by this resource. In this case, we selected the tryp-
tophan concentration of 293.6 mg/L, whereas KS could
still not be estimated.
We estimated yield as g p final OD600=[tryptophan],

where [tryptophan] is the tryptophan concentration of
the growth medium before inoculation with yeast under
the tryptophan conditions of our spatial population ex-
periments (44.04 mg/L) for the following concentrations
of cycloheximide: 0, 50, 200, 400, 675, 1,000, 1,350, and
2,000 nM.
To estimate the density-independent and density-

dependent death rates (m and g, respectively), we performed
a live/dead cell stain (LIVE/DEADFungaLight Yeast Viabil-
ity Kit; Molecular Probes) of cultures exposed to different
levels of cycloheximide (0, 337.5, 675, 1,350, and 2,000 nM)
and different initial cell densities (OD660; 0.2, 0.5, 0.8, 1.1,

Effect of Stressors on Metapopulation E51



and 1.4) in all possible combinations with three replicates
of each treatment. We propagated cultures using the non-
dispersal protocol described above and then measured the
fraction of live and dead cells in each culture at two time
points, 0 and 91 h, to determine the death rate.
The live/dead cell stain was performed as follows. At

the time of staining, 100 mL was sampled from each rep-
licate culture and subdivided into two subsamples. Then
40 mL of sample was used as a dead cell control, which
was prepared by adding 100 mL of 70% ethanol and in-
cubating at room temperature for 1 h. The remaining
60 mL of the sample served as the experimental sample.
Then all samples were washed twice with 100 mL of cold
phosphate-buffered saline (PBS) without tween and re-
suspended in 100 mL of PBS. Cell density (OD660) was
measured using a Tecan Infinite M200 Pro plate reader
and then diluted to a cell density of ∼0:6#106 with PBS.
Then 55 mL of diluted samples was mixed with 0.55 mL
of 1/10 diluted propidium iodide and incubated at 307C
for 30 min, and the fluorescence of each sample was
measured with a BD Accuri C6 flow cytometer. Since
propidium iodide only stains yeast cells with damaged
membranes, dead cells fluoresce red while live cells are
dark. The death rate was estimated using the following
equation:

death rate ð%=15 minÞ

p
death ð% at 91 hÞ2 death ð% at 0 hÞ

91 h#4
:

We used a linear function to fit the relationship between
measured death rate (1% loss every 15 min) and initial cell
density (OD660) at each cycloheximide concentration for
the estimated density-independent death rate, m, and the
density-dependent death rate, g. The linear function is
measureddeath ratepg#[initial cell density (OD660)]1m.
Note that we chose this unit of death rate to match the unit
of growth rate we used in the earlier part of the article.

Data Analysis

The total realized asymptotic population (TRAPA)
achieved was calculated as the sum of OD660 over all of
its subpopulations (i.e., 2–11 wells). The combined effect
of distribution (heterogeneous vs. homogeneous) and
dispersal rate (0%, 6%, 12%, and 24%) on TRAPA was
quantified by analysis of variance (ANOVA). The
ANOVA was implemented through the JMP statistical
program (Sall 2012). Its assumptions of homoscedastic-
ity and normality of the residuals were satisfied by
checking the residual plot by the predicted values and
the Shapiro-Wilk W-test (P 1 :05), respectively. The as-
sumption about the zero expectation of the residuals was

shown to be satisfied by comparing the residual expecta-
tion with zero in the one-sample t-test (P p :5).

Results

Theoretical Results

Bothmathematical analyses and simulations were performed
with models 1 and 2 (eqq. [2a], [2b]). We show only the
results of simulations of model 2, the chemostat model of
consumer and resource; for more details, see the supple-
mental PDF. Note that mathematical analyses of models 1
and 2 could be performed only for the limiting cases
0 ! D ≪ 1 and D → ∞, and they were also limited here
to source-source conditions for the two patches.
The simulations ofmodel 2, depicted as heatmaps (fig. 2),

are comprehensive results of the differences between the to-
tal realized asymptotic populations achieved (TRAPAs) for
each of the three parameters rmax, g, and m, with these
parameters being either homogeneously (TRAPAhomogeneous)
or heterogeneously (TRAPAheterogeneous) distributed across
two patches (reflecting distribution of the stressor), where
the populations are dispersing symmetrically in each case.
Remarkably, the simplest simulation outcomes also happen
to coincide with the most biologically realistic cases, at least
when the stressor acts like an antibiotic by either increasing
mortality, m, or inhibiting growth, rmax, and/or yield, g.
Along the black dashed-dotted diagonal linewhen the two

parameters vary simultaneously, we found that when stressors
decrease rmax or g (panels 1 and 5), TRAPAheterogeneous 1

TRAPAhomogeneous, which was opposite to a decrease in m
(panel 9) that lead to TRAPAheterogeneous 1 TRAPAhomogeneous.
Above the diagonal line, when the two parameters are pos-
itively correlated, we found that a homogeneous distribution
of stressor caused the lowest TRAPA only when rmax and g

are positively correlated (panel 2). In addition, if rmax and m
or m and g are positively correlated, TRAPAheterogeneous 1

TRAPAhomogeneous (panels 3 and 6). Below the diagonal line,
when the two parameters are negatively correlated, a ho-
mogeneous environment has a larger TRAPAonlywhen rmax

and g are negatively correlated (panel 4), which was oppo-
site to panel 2. Last, when rmax andm orm and g are nega-
tively correlated, TRAPAheterogeneous 1 TRAPAhomogeneous (pan-
els 7 and 8), which were also opposite to panels 3 and 6.
Themathematical results with the limiting case 0 ! D ≪

1 can be compared with the results in figure 2. For model 1
for 0 ! D ≪ 1, there was no difference between heteroge-
neity and homogeneity for rmax. For g, results agreed with
panel 5 in figure 2, TRAPAheterogeneous ! TRAPAhomogeneous,
which means that if this parameter were decreased, the ho-
mogeneous distribution would lead to the lowest TRAPA.
For parameter m, consistent with panel 9 in figure 2, the
population size for the heterogeneous parameter m was
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always greater than that of the homogeneous population.
In model 2 for the limiting case 0 ! D ≪ 1, for heteroge-
neity of rmax, TRAPAheterogeneous !TRAPAhomogeneous, in agree-
ment with panel 1. For yield, g, there was no difference in
whethergwas heterogeneous or homogeneous. For param-
eter m, in agreement with panel 9, TRAPAheterogeneous ≥
TRAPAhomogeneous. In addition, consistent with the simula-
tion results, when r and g were positively correlated, then
TRAPAhomogeneous ! TRAPAheterogeneous as long as the popula-

tion is dispersing in the heterogeneous case. Therefore, the
analytic results of model 1 are generally similar to those of
model 2 and to those of the simulation results of figure 2.

Experimental Results

Effects of Cycloheximide on Yeast Growth Parameters.
We estimated the responses of all growth parameters in
equations (2) to cycloheximide stress. Maximum growth

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2: Simulation results reveal the complex interaction between a stressor’s effect on different components of fitness and heterogeneity
on total realized asymptotic population abundance (TRAPA; total population abundance at equilibrium). The columns and rows of the ma-
trix are the three parameters: maximum growth rate (rmax), yield (g), and mortality rate of the consumer (m). Spatial heterogeneity was
introduced by allowing one, two, or three parameters to vary among patches in either a correlated or an anticorrelated fashion. The three
subplots along the black dashed-dotted diagonal line represent scenarios where only one parameter is affected/changed, the three subplots
above the diagonal line represent scenarios where the two parameters are positively correlated, and the three subplots below the diagonal
line represent scenarios where the two parameters are negatively correlated. The vertical axis of each heat map varies the nutrient input rate,
Ninput, while the horizontal axis varies the dispersal rate (D). For nutrient values above the dashed horizontal line in each subplot, all patches
support a viable population (source-source); that is, each can maintain a steady-state population on its own. Between the dashed and dotted
horizontal lines, one of the patches in the heterogeneous case is a sink, while the other is a source (source-sink); that is, one patch type
supports zero individuals at steady state in the absence of dispersal, as would occur if the stressor added to a patch was high enough to
completely suppress population growth. Below the dotted horizontal line, the homogeneous population is inviable, while the “high” patch
in the heterogeneous case is viable. The color of the heat maps quantifies the relative degree to which a heterogeneous population (“Het”)
differs from a homogeneous population (“Hom”). Warm colors indicate that TRAPAheterogeneous 1 TRAPAhomogeneous, while cool colors indicate
the opposite inequality.
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rate (rmax) and yield (g) had a positively correlated response
to cycloheximide exposure (g p 0:05#rmax 1 0:02; R2 p
0:78; fig. 3F), with both parameters decreasing as a func-
tion of cycloheximide concentration (fig. 3A, 3C). Like-
wise, the half-saturation parameter, KS, increased with
increasing cycloheximide dose, indicating a reduction in
nutrient use efficiency, as more nutrients were required
to achieve a given growth rate as cycloheximide levels in-
creased (fig. 3B). Finally, only at a high cycloheximide con-
centration (2,000 nM) did both density-independent death
rate (m) and density-dependent death rate (g) show a sig-
nificant difference from lower cycloheximide concentra-
tions (P ! :001 and P p :001, respectively; fig. 3D, 3E).

Effect of Dispersal and Heterogeneity on TRAPA. Consis-
tent with our theoretical predictions that a heterogeneous
distribution of stressor causes higher TRAPA if r and g are
positively correlated, we measured a significantly larger
TRAPA in treatments with spatial heterogeneity and dis-
persal. With the lower average cycloheximide concentra-
tion (675 nM), TRAPA was significantly higher with dis-
persal (6%) than with nondispersal (0%; P p:0038; fig. 4A)
in the heterogeneous 1-1 environment. There was no sta-
tistically significant difference in TRAPA among nonzero
dispersal levels (6%, 12%, and 24%; P 1 :05). In the homo-
geneous environment, there was no significant difference
in TRAPA between dispersal (6%) and nondispersal (0%;
P p :1127), as predicted (fig. 4A). Importantly, TRAPA
in the homogenous environment, with or without dispersal,
was always significantly lower than TRAPA in the hetero-
geneous environment with dispersal (P ! :0001).
In the high average cycloheximide treatment (1,000 nM),

the heterogeneous, nondispersal treatment had significantly
lower TRAPA than any other treatment (P ! :0001; fig. 4B).
In addition, a higher dispersal rate, especially intermediate
dispersal (12%), resulted in a significantly higher TRAPA
than did 6% in the heterogeneous environment (P p
:0035). Consistently, TRAPA in the heterogeneous envi-
ronmentwith dispersal was significantly higher thanTRAPA
in the homogeneous environment with or without dispersal
(P ! :0001). That TRAPAwas smaller in the heterogeneous
treatment without dispersal than with dispersal can be ex-
plained by themodel prediction that if r and g are positively
correlated, heterogeneous environments support larger
TRAPA when species disperse (figs. S4.4, S5.2 in the sup-
plemental PDF).
Furthermore, the effect of the spatial pattern of hetero-

geneity on TRAPA followed a predictable pattern. In the
lower average cycloheximide treatment (675 nM), TRAPA
with dispersal was significantly larger than that with non-
dispersal only in the heterogeneous 1-1 and 3-3 treatments
(P p :0247 and P p :0182, respectively) but not in the
6-6 treatment (P p :2564), indicating the large spatial

clusters of habitat diminish the effect of heterogeneity on
TRAPA (fig. 4C). However, in the higher average cyclo-
heximide treatment (1,000 nM), all three spatial designs
resulted in significantly larger TRAPA with dispersal than
without dispersal (1-1: P ! :0001; 3-3: P ! :0001; 6-6:
P p :0022) but with a larger effect in the heterogeneous
1-1 and 3-3 treatments than in the heterogeneous 6-6 treat-
ment (fig. 4D). These results indicate that the population-
level effect of the stressor depends not only on the average
level of heterogeneity of the stressor but also on the spatial
pattern of heterogeneity.
A summary of theoretical proofs of the effect of antibi-

otic heterogeneity with dispersal on TRAPA is shown in
table 1.

Discussion

Selection pressures, including resources, predators/grazers,
and stressors, are typically distributed unevenly over the
landscape, creating environmental heterogeneity. There is
growing interest in how the spatial distribution of selection
pressures determines the size of metapopulations (Holt
et al. 2003; Lou 2006; Zhang et al. 2015, 2017). However,
we are unaware of any studies examining how the spatial
heterogeneity of a stressor (i.e., a factor with a negative ef-
fect) affects metapopulation size. Therefore, here we first
derived new mathematical results. Simulations demon-
strate that the impact of stressor heterogeneity on total
equilibrium population size depends sensitively on the in-
teraction between dispersal rate and the physiological effect
of the stressor, that is, on whether the stressor alters the
maximum population growth rate, rmax; the nutrient assim-
ilation efficiency (or yield), g; or the density-independent
and/or density-dependent mortality rates m and g (fig. 3).
For many possible stressor physiological impacts, the effect
of a stressor on total population size may change signs as
either heterogeneity or the dispersal rate changes (fig. 4),
placing limitations on the ability to predict outcomes in
natural populations without precise data. Remarkably,
though, while the complexity of such a system appears be-
wildering at first, we were able to find general mathematical
proofs for two cases ofwide relevance. Specifically, we proved
that stressors that either increase the death rate (e.g., bac-
tericidal antibiotics) or negatively impact both the growth
rate and the yield (e.g., some bacteriostatic antibiotics) will
always have the greatest impact on a randomly dispersing
population when these are homogeneously distributed over
space. That is, for these types of stressors, metapopulation
size is minimized with a homogeneous stressor distribution.
We then validated our theoretical results by using spatially
structured laboratory populations of budding yeast using
an experimental setup that has been rigorously validated
as an accurate experimental model of spatial population
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dynamics. We first determined that the antibiotic cyclo-
heximide increases the yeast death rate but reduces the
growth rate and yield. Then, consistent with our theoretical
predictions, we experimentally observed that a spatially
homogeneous application of stressor had the greatest im-

pact on a metapopulation, even under conditions where
the stressor had negligible effects on mortality.
The mathematical and empirical results demonstrate that

the same amount of stressors with different spatial distribu-
tions resulted in different effects on the metapopulation.

Figure 3: Effect of a stressor on population growth parameters:A, maximum growth rate (rmax); B, half-saturation coefficient (KS); C, yield (g);
D, density-independent death rate (m); E, density-dependent death rate (g); F, correlation between maximum growth rate (rmax) and yield (g)
response to stressor (cycloheximide) exposure.A andBwerefitted by a biexponential function, andC–Fwere fitted by a logistic function (black line).
F was also fitted by a linear regression (red line). OD p optical density.
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That a homogeneous distribution of a stressor leads to a
smallermetapopulation than any heterogeneous distribution
has a straightforward intuitive explanation. In an environ-
mentwith a heterogeneously distributed stressor, low-stress

patches act as sources that overfill neighboring high-stress
patches with dispersal. The dispersal into high-stress patches
from low-stress patches allows high-stress patches to ex-
ceed their local stress-influenced carrying capacity despite

Figure 4: Experimental results showing that connectivity and stressor heterogeneity increase total population size. Shown are the total re-
alized asymptotic population abundance (TRAPA) with four replicates with different dispersal rates in heterogeneous and homogeneous
environments with an average cycloheximide concentration of 675 nM (A), heterogeneous and homogeneous environments with an average
cycloheximide concentration of 1,000 nM (B), a heterogeneous environment with three pattern designs and an average cycloheximide con-
centration of 675 nM (C), and a heterogeneous environment with three pattern designs and an average cycloheximide concentration of 1,000 nM
(D). Different letters in A and B indicate significant differences (P ! :05) among different treatments, and asterisks in C and D indicate that there
was significantly higher TRAPA with dispersal (P ! :05).
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high loss rates on the high-stress patches. The gains in total
carrying capacity at the metapopulation level, then, come
from dispersal from low-stress patches overfilling high-
stress patches. This compensatory effect in earlier research
is described in Harrington et al. (2005). Note that for this
effect to occur generally, the stressor must alter both the
growth rate and the local carrying capacity. This condition
is satisfied when the stressor alters both the growth rate and
yield or just the death rate, consistent with our theoretical
results. On the other hand, with a uniform distribution of
stressor, there is no opportunity for dispersal to overfill
local patches, since all patches have the same local stress-
determined carrying capacity. Because of the causal effect
of stressor heterogeneity on total population size, our work
supports earlier research showing the importance of consid-
ering habitat pattern in species conservation (Fahrig 2002).
While the spatial distribution of a stressor alters total

population size, the extent of this effect depends on dis-
persal. We observed that when the stressor amount is high
and heterogeneously distributed, an intermediate dispersal
rate appeared to maintain the largest metapopulation, which
agrees with previous studies (Santamaria 2002; Zhang et al.
2015). This positive effect demonstrates that dispersal may
be a factor that can maintain high populations when envi-
ronmental conditions are declining (Hansson 1991; Clobert
et al. 2009; Chapman et al. 2012), through subsidies to less
productive patches by more productive patches (Kotze and
O’Hara 2003; Aviron et al. 2007).
As noted in the introduction, our work is related to a

large body of theory on dispersing populations in het-

erogeneous environments (Holt 1985; Freedman et al. 1987;
Law et al. 2003; Lou 2006; Herbener et al. 2012; DeAngelis
et al. 2020). As described in supplement 1, some theoretical
work on two-patch logistic populations linked by diffusion
appeared to suggest that the total size of the equilibrium
metapopulation with dispersal among the heterogeneous
patches could exceed the sum of carrying capacities when
the carrying capacities were distributed homogeneously
among the patches. It was shown mathematically using a
consumer-resource model in He et al. (2019) and Wang
andDeAngelis (2019) that a homogeneously distributed re-
source input always resulted in a total size (TRAPA) of a
diffusing metapopulation that is equal to or larger than
themetapopulation size when the same amount of resource
input is heterogeneously distributed, which was confirmed
experimentally (Zhang et al. 2017).
What we have shown here is the converse of the above-

described situation, where now instead of a resource, a
stressor having a negative effect on a population is distrib-
uted either homogeneously or heterogeneously. In this
case, the homogeneous distribution mathematically leads
to a lower metapopulation size (TRAPA) than any het-
erogeneous distribution when the mortality parameters
or a positively correlated combination of yield and max-
imum population growth rate are considered. Therefore,
we are now able to conclude that positive and negative
environmental factors interact with habitat heterogeneity
to generate qualitatively different outcomes at the meta-
population level.
We are aware that the settings used in the model and

experiment are quite simple compared with real natural
systems, but the conclusions that we gained from this
work can have broad implications in ecology. Our work
advances our earlier understanding of the effect of stressors
on populations from experiments that were mostly per-
formed in homogeneous (environmentally uniform), non-
spatial (well-mixed) laboratory containers (Sibly et al. 2000;
Liu et al. 2009) or at field sites under constant treatments
(e.g., CO2, warming, and drought; Sheik et al. 2011; Morrow
et al. 2015). Therefore, future fieldwork should consider
the heterogeneous distribution of stressors across the land-
scape (Joint et al. 2011) and look at the effect of stressors
at the metapopulation level. In addition, this study gives
some hints toward solving a central problem in determin-
ing how to prioritize treatment areas for the purpose of dis-
ease vectors and pathogen control. Specifically, our results
suggest that equalizing the treatment level in different regions
might be the most efficient strategy for minimizing the size
of pest species (Giljohann et al. 2011; Arroyo-Esquivel
et al. 2019). This finding can help field ecologists andman-
agers identify the optimalmanagement strategy thatmaxi-
mizes effectiveness given limited budgets and resources.
Last, since dispersal increases metapopulation abundance

Table 1: Summary of theoretical proofs of the effect of antibi-
otic heterogeneity with dispersal on total realized asymptotic
population abundance (TRAPA; total population abundance
at equilibrium), according to the parameters in equations (2)

Parameter Symbol

Effect of
antibiotic

heterogeneity
with dispersal
on TRAPA

Mortality (density
independent) m Positive (≥)

Mortality (density
dependent) g Positive (≥)

Yield g Negative (≤)
Asymptotic growth rate rmax Negative (≤)
Negatively correlated m

and g m and g Positive (≥)
Positively correlated rmax

and g rmax and g Positive (≥)
Note: Positive effect means TRAPAheterogeneous 1 TRAPAhomogeneous, and neg-

ative effect means TRAPAheterogeneous ! TRAPAhomogeneous .
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in a heterogeneous stressful environment, preventing inva-
sive species from dispersing to new areas and creating dis-
persal pathway barriers might be another efficient solution
for biological invasion control (Wilson et al. 2009). In gen-
eral, our work here indicates that the effect of stressors on
natural populations requires a detailed understanding of a
population’s dispersal structure, the degree of heterogeneity
of a stressor over the population’s range, and the mode of
action of the stressor on individuals in the population.
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