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Carrying capacity is a key concept in ecology. A body of theory, based on the
logistic equation, has extended predictions of carrying capacity to spatially
distributed, dispersing populations. However, this theory has only recently been
tested empirically. The experimental results disagree with some theoretical predic-
tions of when they are extended to a population dispersing randomly in a two-
patch system. However, they are consistent with a mechanistic model of con-
sumption on an exploitable resource (consumer-resource model). We argue that
carrying capacity, defined as the total equilibrium population, is not a fundamental
property of ecological systems, at least in the context of spatial heterogeneity.
Instead, it is an emergent property that depends on the population’s intrinsic
growth and dispersal rates.

A Brief History of Carrying Capacity — a Fundamental but Confusing Concept
Carrying capacity (commonly defined as the upper limit on the size of the population), has been
one of the most important concepts in ecology for the last century. As such, it has been broadly
used, from cell populations up to that of ecological communities at landscape and ecosystem
levels [1,2]. Wildlife biologists introduced the term in the early 20th century as a tool in wildlife
management. Aldo Leopold viewed carrying capacity as the population density reached at a
particular site, determined by both the resources available and intraspecific competition [3].
Although, in Leopold’s view, the realized carrying capacity was usually less than the maximum
population density reached under optimum conditions. He called this the saturation point — the
maximum density that could be achieved by careful habitat manipulation.

Leopold’s definition was by no means the only one held among ecologists. For instance,
Paul Errington viewed carrying capacity as the maximum size that a population could reach if
there was refuge from predation available. Dhondt [4] documented the use of both Leopold’s
and Errington’s definitions by other wildlife biologists and ecologists, noting, for example, that
Dasmann [5] carried distinctions further by introducing four different definitions related to carrying
capacity: subsistence density, optimum density, security density, and tolerance density. Dhondt
[4] reviewed the multiplicity of views of carrying capacity and called it confusing, concluding that,
at least for wildlife biology, the term should be avoided.

However, carrying capacity had already entered the mainstream of ecology. Odum [6] took the

first step of giving carrying capacity a formal mathematical meaning. He defined it as the constant
K in the Pearl-Verhulst form of the logistic population equation:

%:f(“%)N [1

where N is population size and r is the intrinsic population growth rate. This equation defines the
carrying capacity as the equilibrium point that a population would always approach from lesser or
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The logistic equation, with carrying
capacity, K, and growth rate, r, has tradi-
tionally been used to describe dynamics
of ecological populations.

Experiments confirmed the prediction
that dispersal could increase metapopu-
lation abundance in heterogeneous
environments, whereas they rejected
the prediction that heterogeneous envi-
ronments support a larger metapopula-
tion abundance than homogeneous
environments with the same sum over
K values.

Consumer-resource models, which ex-
plicitly consider the resource inputs and
time scales of feedbacks between
organisms and their resource, agree
consistently with experimental results,
suggesting they are more appropriate
for describing populations in space.

The theoretical results have impor-
tant management implications on
wildlife, such as the important role
of dispersal, or habitat connectivity,
in influencing population abundance
in patchy environments.
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greater values, and hence is regulated around K. Odum [6] assumed that the value of K depends
on the limiting resource of the population. It appears in the logistic equation as a constant value,
although Odum acknowledged that it could vary as the environment changes.

Although the use of the logistic equation with carrying capacity K to describe ecological popula-
tions might seem to have ended the confusion over its meaning, both the logistic and the carrying
capacity concept it formalizes have continued to be criticized from the empirical side. While
logistic population growth is often observed in laboratory studies of microbial populations, Botkin
[7] noted that it has never been observed in nature, and many ecologists have embraced more
qualitative concepts of population regulation, such as density-vague regulation [8]. Nevertheless,
the Pearl-Verhulst form of the logistic equation, with carrying capacity K being an equilibrium
determined by resources, has been standard in ecology textbooks since the 1970s [4], and
has a central place in theoretical ecology. For that reason, we focus on carrying capacity based
on Equation 1 and show that there are serious complexities related to this model when extended
to heterogeneous space.

Scaling up Carrying Capacity from the Local Site to the Landscape or Region
Predicting population dynamics at a landscape or regional level is a paramount problem in
ecology, especially under the changing environment and human disturbance [9,10]. It has been
said that ‘the emerging discipline of landscape ecology must serve as the foundation for effective
biodiversity conservation programming’ [11]. For example, forest fragmentation is creating bar-
riers that will hinder, or respectively, slow, dispersal capacity [12—14]. As dispersal rates decline
with habitat fragmentation, understanding the combined effect of heterogeneity and dispersal
on the attainable population size will be essential for fostering population persistence of desired
species [15-17] or limiting invasive species in these environments [18]. Additionally, general
patterns of species range shifts (to higher elevations and latitudes) are anticipated with warming
temperatures [19-21], so projecting shifting population dynamics along environmental gradients
is essential.

Much previous work has focused on understanding the forces that determine the size of natural
populations, using the assumption of a spatially homogeneous (environmentally uniform) system
[22-24]. With that assumption, the population dynamics can be described by the logistic
Equation 1 in which r and K have constant values across the spatial environment [25]. However,
almost all environments are heterogeneous, with habitat quality varying either continuously or
occurring as discrete, disjointed patches [26]. Habitat heterogeneity has increased due to frag-
mentation by human activity and the conversion of natural ecosystems into agricultural or
urban areas [27,28], and the effect of environmental change [29,30]. Such heterogeneous
environments consist of a variety of local population growth rates and carrying capacities;
hence, varying r and K. Importantly, a growing body of research has highlighted that spatial
heterogeneity may be as important as the spatial mean for assessing environmental impacts on
populations [31]. Including spatial heterogeneity, in combination with population dispersal, can
alter and even reverse certain population-level predictions based only on the mean [32-34]. As
a result, understanding the role of environmental heterogeneity in affecting natural population
dynamics is crucial [35].

Dispersal, as a fundamental ecological process, plays an important role in shaping population
dynamics [36,37], community diversity and composition [38], and ecosystem functioning [39].
All organisms, including microbes, disperse within their ranges and dispersal can occur in differ-
ent ways. Two classic dispersal patterns are the ideal free distribution (IFD) and random dispersal.
According to the IFD, if other factors besides carrying capacity of a habitat patch, such as
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predator density, can be ignored, and animals are free to move, they will continue to move until
further movement cannot improve their fitness. That is the point when the maximum population
abundance attained at equilibrium is equal to the sum of the carrying capacities on the individual
patches, or is the integral of continuously varying carrying capacity over the whole area. In the
alternative to the IFD, random movement, if there is no directional bias, is called symmetric
dispersal, of which diffusion is a special case where the dispersal proceeds by local steps. In
the absence of knowledge of how individuals of a population actually move, symmetric dispersal
is assumed in the preponderance of ecological models with dispersal [40], such as reaction—
diffusion models [41]. Therefore, we use this assumption with the logistic model (Equation 1) to
show how random movement complicates the total size that a population can reach in a hetero-
geneous environment. Note, however, that the results here can be extended to asymmetric
dispersal (Box 1).

It might seem that determining the total carrying capacity of a randomly dispersing popula-
tion in heterogeneous environments would be a straightforward summation of each carrying
capacity, K;, over all the local habitats. However, when mathematical ecologists analyzed
this seemingly simple extension of the logistic equation beyond its nonspatial form to a
population dispersing randomly in heterogeneous space, they found the following surpris-
ing mathematical results (Boxes 1 and 2), which we will refer to as predictions to be tested
empirically.

Box 1. Mathematical Explanation of Prediction 1

Extending the logistic model to heterogeneous space can be done by including logistic growth as the reaction term in a
reaction-diffusion model, or by modeling space as a collection of discrete patches, among which populations can
disperse. To demonstrate the effects of population movement, consider the latter approach, simplified to two patches
and described by an equation for each patch, in which population dispersal rates are the same in both directions and
carrying capacities and intrinsic growth rates differ on the two patches;

dN N.
d_t*:m (1—K—:>N1—DN1 + DN; [la]
dN N.

Tf: 2(1-}72)/\/2-0/\/2 + DNj. (Ib]

where D is the symmetric dispersal between the two patches. As found by Freedman and Waltman [87] and Holt [88] and
stated in corrected form by Arditi [89], in the limit of large dispersal rate (D — «), which corresponds to diffusion occurring
on a much faster time scale than population change, the equilibrium abundance that can be reached by the population in
this system is

riKa —raKj

Total population = K +Kp + (K1 =Kz) =2 T K,
112 21

[

This has the implication that the intrinsic growth rates on the two patches, r; and r», have an effect on the total equiliorium
population when the population disperses symmetrically between the two patches. If K; > Kz and ri/K; > ro/Ko, the
population in a heterogeneous two-patch system could reach a total equilibrium population size greater than the sum
of the carrying capacities of the two patches (equivalent to the population not diffusing) (Prediction 1). Conversely, if
ri/K; < ro/Ko, the total equilibrium population is less than Ky + Ks. An analogous result was found in continuous space
by Lou [90], using a partial differential reaction diffusion equation. Arditi et al. [68] showed that making the dispersal
asymmetric does not change the results qualitatively. Although these results are for D — <, simulations show that
the total population deviates from K; + K for smaller values of D as well, though approaching K; + K, as D — .
Therefore, dispersal rate, along with the intrinsic growth rate, influence the equilibrium total population size in a hetero-
geneous environment.

Thus, the total size of a diffusing population can differ from that of the sum of the local carrying capacities, if the intrinsic
growth rates also differ. Prediction 1 was confirmed experimentally [47].
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Box 2. Mathematical Explanation of Prediction 2

Prediction 2 follows as a special case of Equation Il in Box 1. It states that a diffusing population can reach a greater
equilibrium population size in the heterogeneous case than in the homogeneous case when the two carrying capacities
differ but sum to the same in the two cases. That is, in the homogeneous case, K; = K> = K, while in the heterogeneous
case Ky =K +a] , K, =K — 4, where is a deviation in K. From Equation Il in Box 1 it can be found that

K(r1=ro) +4(r1 +ra2)

Total population = 2K + 24| ——~— |,
el * K(ri +r2) +A(ri—r2)

which exceeds 2K when r; > ro. Prediction 2 is mathematically correct, but it does not agree with the experimental results.
The reason is that the experiment differed in an important way from the model based on coupled logistic equations. In the
experiment, input of a limiting resource/nutrient, was provided to the yeast populations. The input was regulated such that
the sum of the inputs to the two patches was same in the homogeneous and heterogeneous cases, although the amounts
going to each patch differed in the heterogeneous case. It can be shown that Equation | for r; > r, violates the equality of
resource inputs in the heterogeneous and homogeneous cases.

To show this, note that in terms of the coupled logistic equations, the rate of input of resource at equilibrium is r1N7 + roNs =
1Ky + roKso, which can be seen by adding Equations la and Ib in Box 1 at equilibrium. Now, comparing the heteroge-
neous case, r1(K + 4) + ro(K — 4) with the homogeneous case, r1K + roK, it can be seen that the total input cannot be the
same for the two cases unless r; =r». Therefore, it is impossible for the total population to exceed K; + K2 while keeping
total input constant. It can further be shown that, if total resource input is kept the same in the heterogeneous and ho-
mogeneous cases, the population abundance will always be the same or larger in the homogeneous than the hetero-
geneous case, as found in the experiment. The opposite can occur if r; and r» are different. This is a special case of a
more general result (Theorem 11 in [91]; see also [53]). If a consumer—resource model is instead of the logistic model,
the equality of input in the heterogeneous and homogeneous cases is satisfied in @ more straightforward way (Box 3).

Prediction 1: in a heterogeneous system, where both growth rate and carrying capacity vary
spatially, total population abundance of a dispersing population may exceed total population
abundance of a nondispersing population. Prediction 2: the total population abundance of a
dispersing population in a heterogeneous environment can be higher than in the homogeneous
environment, even if the sum of all local carrying capacities is the same for both cases. This is a
special case of Equation | in Box 1, which is the basis of Prediction 1.

These two predictions were made based on the spatial extension of the logistic model, but
Prediction 1 has also been recognized intuitively. Oksanen [42] cited those mathematical results
by imagining a situation in which a population distributes itself between productive and nonpro-
ductive patches, referring the population in the nonproductive patches as a spillover population.
Sutherland [43] described a similar situation where this spill-over population could boost the total
population above the combined equilibria of the productive patches. This finding motivated him to
cast doubt on the logistic equation interpretation of carrying capacity.

Empirical Testing of Mathematical Results

As populations exist on landscapes with heterogeneous resources within which they disperse
(e.g., lijima and Ueno [44], Sirén [45]), these mathematical predictions are important to deter-
mine which distribution of resource could support a larger metapopulation abundance. Despite
these implications, these results were not tested empirically until recently. A greenhouse exper-
iment using floating plant [duckweed (Lemna minor Linn.)], considered the difference in plant
total biomass when the total nutrient resources were distributed heterogeneously or homoge-
neously among a discrete series of water-filled containers [46]. This showed, for the first time,
that total biomass in heterogeneous environments peaked at an intermediate, relatively low,
dispersal rate, and was higher than the total carrying capacity of the system without dispersal.
To provide a more rigorously controlled environment and include exploitable resources, a
subsequent study was conducted using spatially dispersing laboratory populations of yeast
(Saccharomyces cerevisiae) [47]. This study created heterogeneous and homogeneous
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environments by distributing the same amount of resource inputs in different patterns among
discrete cells [47]. Consistent with Prediction 1, spatial dispersal increased total equilibrium
population abundance in heterogeneous environments only when r and K were positively
correlated. Surprisingly, however, the results contradicted Prediction 2; that is, the homogeneously
distributed resources supported a higher total consumer population than heterogeneously
distributed resources, even with population dispersal [47]. The mathematical explanation as to
why Prediction 1 was supported by the experiment is shown in Box 1, while the explanation as
to why Prediction 2 was not supported is in Box 2.

A more recent study, which was also used yeast (S. cerevisiae), examined how a stressor’s
spatial distribution interacted with dispersal to influence metapopulation dynamics [48]. In
agreement with previous work that showed dispersal increased metapopulation abundance in
heterogeneous environments with resources [47], this study also demonstrated that dispersal
increased the metapopulation abundance when a stressor was heterogeneously distributed
[48]. In contrast to the previous finding that a homogeneously distributed resource led to a higher
metapopulation abundance [47], this study found that a homogeneous spatial distribution of
stressor minimized metapopulation abundance due to the opposite impact of the stressor on
populations than resources [48]. Together, these studies consistently supported Prediction 1
but highlighted that confirmation of Prediction 2 was contingent on the specific variable that
was distributed either heterogeneously or homogeneously in the region.

Ecological Implications of Mathematical Results

The logistic equation, particularly in the Pearl-Verhulst form, has been called ‘probably the most
well-known and influential population model in ecology, serving as the basis for many other
models and theories’ [49]. We point out that carrying capacity, K, does not scale up in a simple
way to give total population in heterogeneous space, but is affected by both the population’s
intrinsic growth rate and its dispersal rate. Despite the increasing mathematical work motivated
by the new experimental and theoretical results [48,50-56], more attention is still needed from
ecologists. The concept of carrying capacity has long been central in the fields of wildlife manage-
ment and conservation biology [57]. The emerging results on the scaling up of predictions of
carrying capacity from local scale to the landscape and regional scales have broad ecological
implications.

For example, Prediction 1, which was confirmed experimentally [46-48], demonstrated that
dispersal could increase total population abundance in heterogeneous environments. This pre-
diction highlights the important role of dispersal, or habitat connectivity, in patchy environments.
For instance, massive management efforts have been made to facilitate wildlife movement across
different patches of habitat, such as building road-crossing bridges [58] and such efforts could
play an essential role on increasing and conserving wildlife populations. On the contrary, since
dispersal increases population abundance in a heterogeneous environment, limiting the rate of
invasive species from dispersal by creating dispersal barriers could help limit size of undesirable
populations [59].

Experimental finding partially disagreed with Prediction 2, a special case of Equation | in Box 1
disagreed with experimental findings. The more appropriate consumer—resource model (Box 3)
agreed with the experimental results that a homogeneous distribution of resource can support
a higher total population size at equilibrium than can the same total resource input distributed
heterogeneously [47]. Conversely, a homogeneous pattern of stressor can reduce total popula-
tion abundance to a lower level than if the stressor was heterogeneously distributed [48]. Indeed,
while Prediction 2 is a theoretical result based on very restrictive assumptions that are made by
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Box 3. Consumer—Resource Model

The analysis in Box 2 shows that the limiting resource input rate to a population must be considered when calculating total
population size in a heterogeneous region. This means that the values of K cannot be manipulated arbitrarily if total
production summed over patches is to be conserved. With this constraint, total size of a population dispersing in a hetero-
geneous environment cannot exceed that in the homogeneous environment. This condition is automatically satisfied by
modeling a population as a consumer in a consumer-resource equation, in which a spatially varying limiting resource input
rate, Rinpur, is specified locally. For a multipatch system, the equations for the consumer N; and its resource, R;, on a single
patch might be

an;
o fi(R)—miNi—giN? [Ia]
dR 1

FTI S R/nput./—n,'Ri—lji fi(Ri), [io]

where the consumers on different patches are linked by dispersal. This model still produces the result that a dispersing
population in a heterogeneous region can reach a higher total population abundance than the sum of the local carrying
capacities but as long as 27:1 Rinput; 18 held constant, the maximum total population is reached for the homogeneous
system. The sketch of the consumer-resource model can be presented (Figure |). The sum of the resource inputs, Rjputr
and Rj,put, 2, can be set to be equal in the homogeneous and heterogeneous cases.

m;Ny+ g:N/ m,N,+ g,N;?

DN,

A 4

o

DN,

filRy) fAR2)

R, |— R, |——
ulRI “ZRZ
Rlnput,l Rlnpu ‘2
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Figure |. The Sketch of the Consumer-resource Model. Here N is the consumer population abundance, R is the
nutrient concentration, D is the dispersal rate, m is the mortality rate, g is the density-dependent loss rate, i is the loss
rate of nutrient from the system and f is the consumption rate of nutrient. Flows of limiting resource in consumer-
resource model. The sum of the resource inputs, Rjpur @nd Rippur,2, Can be set to be equal in the homogeneous and
heterogeneous cases.

the models, but it still has potential implications for population management. In particular, the first
result, regarding to the distribution of resources, is associated with a classic applied ecological
question: how to allocate a certain amount of resource or nutrient to increase population
abundance. For example, this theory could help to provide guidance on how to increase wood
production under different fertilization treatments in natural resource management [60]; how to
support larger wildlife populations by altering food distribution and dispersal patterns [61]; how
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to maintain population abundance in response to enhanced environmental stochasticity via
changing foraging behavior [62]; and perhaps how occupancy choice might change after rapid
environmental change [63].

Another implication of our review is that we add a new dimension to earlier critiques of carrying
capacity formalized in the Pearl-Verhulst equation. Criticisms were in fact raised fromits inception
in response to Raymond Pearl’s view of the equation as a law of growth [64]. Among more recent
criticisms, Wilkinson [65] pointed out that logistic models do not explicitly consider feedbacks
between the organisms and their abiotic environment. Mallet [66] noted, based on a meta-
analysis of 128 laboratory toxicological studies that r and K are not independent. Instead, they
tend to be positively correlated, so that they should not be varied independently in models [67].
Another mathematical study highlighted that the failure of total population in a heterogeneous
environment to be the sum of local carrying capacities calls into question carrying capacity
being an intrinsic property of an ecosystem [68].

In view of the limitations of the logistic model, consumer—-resource modeling (Box 3) of heteroge-
neous systems may be the appropriate approach to other areas of theory (e.g., Tiiman [69]). Inline
with this, MclLeod [70] has advocated the use of consumer—resource models to describe popu-
lation of herbivores that can be supported in a variable environment. Loreau [71] criticized the
closure of the logistic model to explicit external inputs, which led to their recommending the
consumer-resource modeling approach. The consumer-resource approach may then be a
more realistic framework for personality-dependent spatial ecology by offering specific predic-
tions on the interactions between movement and environmental factors, such as resource
distribution or landscape structure [72,73]. Further, it could provide a foundation of merging
individual behavior to population and community levels [74]. Lastly, it can contribute to disease
research via incorporating movement analyses [75]. Therefore, we are in agreement with Mallet
[66], Arditi [68], and other critics of the logistic model, that the consumer-resource model is a
better alternative to the logistic model in many cases, although it adds to model complexity.

Concluding Remarks and Future Perspectives

A large body of theory has been produced to predict dispersal evolution in temporal heteroge-
nous environments [76-78], and to investigate evolution of dispersal in spatially structured land-
scapes based on individual-based models [79-82]. Temporal variability in environmental
conditions also affects what is understood be carrying capacity [83]. How estimates of carrying
capacities under different conditions scale to an average carrying capacity over a long time period
has the same complexity as for spatial heterogeneity. It appears that, analogous to the spatially
heterogeneous situation, temporal variation in the intrinsic growth rate is important in determining
time average population size, although more detailed analysis is needed. Empirical testing is
needed to validate all these directions, and beyond, as suggested in Figure 1.

Other interesting ideas remain to be explored, some examples of which are listed in Figure 1.
Despite the fact that mathematical theories have not been developed in most cases in Figure 1,
possible predictions and suitable testing systems are presented in Figure 1. For instance,
extending understanding from ‘stepping-stone dispersal’ (local dispersal or diffusion in
mathematical terms) to global dispersal (nonlocal dispersals in mathematical terms) could
advance our prediction on disease spread [84].

Future work will be needed to incorporate other dimensions of dispersal to provide a more com-
prehensive understanding (see Outstanding Questions). For example, it appears that stage struc-
ture or body size may change the dispersal behavior. Large birds travel farther in homogeneous
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Outstanding Questions

What is the impact of global dispersal
on altering population dynamics in
heterogeneous environments? How
can we incorporate other dimensions of
dispersal (e.g., distance and direction)
to provide a more comprehensive
understanding?

How do age-structured dispersal pro-
cesses regulate population dynamics in
heterogeneous environments? Which
age classes contribute most to maintain
a higher population abundance?

How can we capture the role of a
temporal change of heterogeneous
environment or an environment with
multiple layers of heterogeneity?

How can we apply the mathematical
theory on wildlife management to
support a larger population abundance,
especially under anthropogenic actions
and climate change?
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Figure 1. Future Work That Can Be Explored Extending from Previous \Work. (A) Previous work only performed ‘stepping-stone dispersal’ (or local dispersal), to
which population only disperse to the two neighbor patches (left and right) each time. Future work could consider the effects of diverse dispersal patterns on
metapopulation abundance, for instance, the so-called nonlocal dispersal (in mathematical terms) — population could disperse to nonadjacent patches. (B) Models of
stage-dependent dispersal exist [92], but how it affects total population size needs research. Hence, it would be very interesting to test if juvenile (black dots) and adult
populations (red dots) having different dispersal rates would alter metapopulation dynamics. (C) Previous work focused on a temporally constant heterogeneous
environment. It is possible to look at the impact of a temporally heterogeneous environment on population dynamics. (D) Only the way in which dispersal alters
metapopulation in a single layer of heterogeneous environment has been studied, so it is unclear but important to consider how multiple layers of heterogeneity with
dispersal play a role on changing the metapopulation dynamics.

environments due to the need for different habitat types associated with foraging and reproduc-
tion [85]. Therefore, in these systems, incorporating stage-structured dispersal processes will
be necessary. Additionally, as there are multiple layers of heterogeneity in a natural system [86],
and heterogeneity changes temporally due to disturbance and climate change, investigating
the role of both multiple layers of spatial heterogeneity and temporal heterogeneity change is
essential.

Lastly, we noted earlier that the IFD and random symmetric dispersal are two idealizations of dis-
persal that have been examined mathematically. Arditi [68] has shown that dispersal asymmetry
can have a strong quantitative influence, depending on its magnitude and on its direction, but little
qualitative difference from the symmetric case. This work will help towards a synthesis of the

8 Trendsin Ecology & Evolution, Month 2020, Vol. xx, No. xx



Trends in Ecology & Evolution

combined effects of spatial heterogeneity and movement. Hopefully this can be pushed further
into other factors that influence total population size.
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