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Invasive species, disease vectors, and pathogens are significant threats to biodiversity, ecosystem func-
tion and services, and human health. Understanding the optimal management strategy, which maximizes
the effectiveness is crucial. Despite an abundance of theoretical work has conducted on projecting the
optimal allocation strategy, almost no empirical work has been performed to validate the theory. We first
used a consumer-resource model to simulate a series of allocation fractions of controlling treatment to
determine the optimal controlling strategy. Further, we conducted rigorous laboratory experiments using
spatially diffusing laboratory populations of yeast to verify our mathematical results. We found consis-
tent results that: (1) When population growth is limited by the local resource, the controlling priority
should be given to the areas with higher concentration of resource; (2) When population growth is not
limited by the resource concentration, the best strategy is to allocate equal amount of controlling efforts
among the regions; (3) With restricted budget, it is more efficient to prioritize the controlling effects to
the areas with high population abundance, otherwise, it is better to control equally among the regions.
The new theory, which was tested by laboratory experiments, will reveal new opportunities for future
field interventions, thereby informing subsequent biological decision-making.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Invasive species, disease vectors, and pathogens are significant
threats to biodiversity, ecosystem function and services, and
human health (Crowl et al., 2008). The increased connectivity of
the global human population has further amplified the influence
of biological invasions and disease outbreaks (Dukes and
Mooney, 1999; Sakai et al., 2001; Smith et al., 2007). As the avail-
able budget/resource is becoming more limited, understanding the
optimal management strategy maximizes the effectiveness with
the limited amount of budget/resource, is exceptionally urgent
(Chades et al., 2011). However, identifying and quantifying the
optimal management strategy is challenging and poorly explored
due to the difficulty of prioritizing the available resource among
infected regions (McDonald-Madden et al., 2010; Nichols and
Williams, 2006; Olson, 2006).

Take infectious diseases as an example. It usually occurs simul-
taneously in different but interconnected regions (Dye and Gay,
2003; Ferguson et al., 2001; Keeling et al., 2001). In this case, when
epidemics allocate the available resources to treat infected individ-
uals, seeking to control in more than one region poses a dilemma of
how best to deploy limited resources among different regions.
Should preference be given to treating infected individuals in
regions with high or low levels of infection, or to equalizing levels
of infection in different regions as much as possible (Lipsitch et al.,
2000)? Take invasive species as another example. Eliminating or at
least controlling invasive species is paramount (Dantonio and
Vitousek, 1992; Vitousek, 1990; Wilcove et al., 1998) since invad-
ing species cause tremendous economic losses (� $120 billion per
year solely in the United States) (Pimentel et al., 2005). A similar
dilemma occurs according to whether the controlling effort should
focus on decreasing invasive plants in the central core area where
the plants are more abundant and denser, or in the outlying
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regions where smaller colonies are starting to occur at low levels
(Blackwood et al., 2010; Hulme, 2003).

A large body of mathematical theory has worked on projecting
the optimal control strategies regarding a large class of invasion
problems using different models (Blackwood et al., 2010;
Hastings, 2014; Hastings et al., 2006; Moody andMack, 1988), such
as multiscale hierarchical Bayesian forecasts model (Ibáñez et al.,
2009), dynamic spatial modeling (Hastings, 2014; Melbourne
et al., 2007), and spatially explicit, individual-based simulation
(SEIBS) models (Higgins and Richardson, 1999). Whereas, theoret-
ical findings suggested different controlling strategies. For
instance, a density-structured model suggested that prioritizing
the removal of low-density subpopulations of invasive species is
more efficient than removing high-density subpopulations
(Taylor and Hastings, 2004). Alternatively, a species distribution
model predicted that focusing on the sites where species are most
likely to occur and exerting a moderate amount of effort at these
sites is more efficient (Giljohann et al., 2011). Hence, we still do
not have adequate knowledge to generalize the optimal strategy
due to very limited empirical work that has been performed to val-
idate the existing theoretical conclusions (Bonneau et al., 2019).
Another constraint of the existing mathematical theory is the gen-
eral lack of explicit consideration of the time scales of feedback
between the organisms and their resource and the role of dispersal
(Wilkinson, 2006).

The goal of this study is to overcome these limitations by devel-
oping robust mathematical modeling to identify how to efficiently
minimize the total population abundance of target species across
space with a given amount of controlling treatment in various con-
trolling scenarios, and further validate our theoretical results by
rigorous laboratory experiments. Specifically, we aim to investi-
gate how to optimally allocate the total controlling treatment
between the two patches (optimal allocation fraction) and how
the optimal allocation fraction varies along a gradient of allocation
fraction of growth resource between the two patches. We first used
a mechanistic, bottom-up approach with explicit resources
(consumer-resource model) to model dispersing population
growth in a two-patch system (MacArthur, 1972; Tilman, 1982),
where the two patches were connected by population dispersal.
We adopted this model framework because it accounts for the
resource dynamics as an additional variable (MacArthur, 1972;
Tilman, 1982), which is more suitable for describing the effects
of environmental heterogeneity and dispersal on population
dynamics (He et al., 2019; Ruiz-Herrera and Torres, 2018; Van
Dyken and Zhang, 2019; Wang and DeAngelis, 2019; Zhang et al.,
2017, 2020a,b). We then conducted rigorous laboratory experi-
ments using high throughput experimental methods in spatially
dispersing laboratory populations of the heterotrophic budding
yeast, Saccharomyces cerevesiae, to verify the mathematical results.
This study aimed to answer four questions, mathematically and
experimentally: 1. What is the optimal allocation fraction of con-
trolling treatment when population growth is limited by growth
resource? 2. Does the optimal allocation fraction hold consistently
when population growth is not limited by resource? 3. How does
the optimal allocation fraction vary between restricted and abun-
dant controlling treatment? 4. What is the role of dispersal on
altering the optimal allocation fraction in the above three
scenarios?
2. Materials and methods

2.1. Mathematical simulations

A two-patch consumer-resource model was used to simulate
population abundance (P) under different combinations of
2

allocation fractions of resource (X) and controlling treatment (Y)
between the two patches. We assumed that, within the range
where the population growth is limited by resource, a patch can
grow a larger population abundance when contains higher
resource but lower controlling treatment (Zhang et al., 2017,
2020a). The dependence of population growth rate and reproduc-
tion were calculated according to the allocation fractions of
resource (X) and controlling treatment (Y) in each patch and the
function was calculated by previous experimental measurements
(Zhang et al., 2017, 2020a) (more details below). Only resource
was exploitable by populations while the controlling treatment
was not exploitable.

Three combinations of scenarios were simulated: i) Low and
high levels of total resource (to represent tryptophan in the exper-
iment below); Note that population growth was only limited by
resource at the low level. ii) Low and high levels of total controlling
treatment (to represent cycloheximide in the experiment below);
iii) Low and high dispersal rates (d) (5% and 20%). In each scenario,
a series of allocation fractions between the two patches of both
resource (X = 0.1, 0.2, . . . 0.9) and controlling treatment (Y = 0.1,
0.2, . . . 0.9) in all combinations was performed. Once a combination
is picked, the same combination was used for the entire simula-
tion. The simulated total population abundance of the two patches
was calculated at all combinations of allocation fractions of
resource (X) and controlling treatment (Y) in each scenario. The
optimal allocation strategy at each level of resource allocation frac-
tion (X) was defined as the allocation fraction of controlling treat-
ment (Y) resulting the lowest total population abundance.

The model started with the same initial population (P1
10 ¼ P1

20)
in both patches. To match the experiment, we let population grow
for length T corresponding to one day in the experiment, then a
fraction (d) of population in Patch 1 was dispersed to Patch 2,
the fraction (1-d) of the population in Patch 1 remains, and the
fraction (d) of population in Patch 2 was dispersed back to Patch
1. There are eight total growth period (j), which represented eight
days growth in the experiment described below. Hence, for j = 2,

3, . . ., 8, Pj
10, the initial population at the beginning of time period

j, is given by Pj
10 ¼ dP2 j� 1ð ÞT�ð Þ þ ð1� dÞP1 j� 1ð ÞT�ð Þ where d is

the transfer or dispersal rate, j� 1ð ÞT� represents the time at the
end the previous day, and P2 j� 1ð ÞT�ð Þ and P1 j� 1ð ÞT�ð Þ mean
the populations at the end of the day before the dispersal:

Pj
20 is similar. This just says that the initial population level for a

growth period are the final time values from the previous growth
period adjusted due to dispersal.

A conceptual figure of the model was shown in Fig. 1, and using
the new population levels after dispersal, the corresponding sys-
tem of differential equations is given below (Eqs. (1–4)) during
each growth period,
Patch 1:

dP1

dt
¼ rmax1N1P1

ks þ N1
� gP1

2 ð1Þ

dN1

dt
¼ � rmax1N1P1

c1 ks þ N1ð Þ ð2Þ

Patch 2:

dP2

dt
¼ rmax2N2P2

ks þ N2
� gP2

2 ð3Þ

dN2

dt
¼ � rmax2N2P2

c2 ks þ N2ð Þ ð4Þ

Where the population abundance in patch 1 and 2 are represented
by P1 and P2 while the corresponding resource level are N1 and N2.



Fig. 1. Schematic figure of the experimental design. All experiments started with
the same initial yeast population in Patch 1 and 2 (P1

10 ¼ P1
20). A fixed total amount

of resource (black) was allocated between the two patches at fractions of X and 1-X.
Under each resource allocation fraction, a fixed amount of controlling treatment
(red) was allocated between the two patches at fractions of Y and 1-Y. The
population grew for one day, then a proportion of population in Patch 1 (called
dispersal rate, d) was dispersed from Patch 1 to Patch 2, then the same proportion of
population in Patch 2 was dispersed from Patch 2 to Patch 1. After that, culture
media was removed and refilled with fresh media. Both simulation and experi-
ments were run for eight growth periods (days) when the total population reached
steady state.

B. Zhang, L. Zhai, J. Bintz et al. Journal of Theoretical Biology 528 (2021) 110835
Each choice of total level of resource allocation fraction (X) will

determine the resource values of Nj
10;N

j
20, for the jth growth period,

j = 1, 2, . . .8. The initial values for resource do not, in fact, depend on
j: letting Ntotal denote the total amount of resource and X the
resource allocation fraction for Patch 1, we have

Nj
10 ¼ XNtotal;N

j
20 ¼ ð1� XÞNtotalfor all j:

The maximum growth rate for Michaelis-Menten uptake is rmax

and c is the yield or consumer production per unit nutrient for
each patch. Given the fractions of toxicant control treatment (Y)
and the resource allocation, the parameters (rmax1 rmax2, and c1.
c2)) were determined in each patch, and the dependence of these
parameters on these fixed fractions were calculated based on pre-
vious experimental measurements (Zhang et al., 2017, 2020a). The
parameter ks is the half-saturation constant and g is the density
dependent loss rate. We ran the model for eight time periods (j)
when the population reached steady state. Total population abun-
dance (P1 + P2) was calculated as the sum of population in Patch 1
and Patch 2.
2.2. Experiment

Strain and culture medium: An auxotrophic, haploid strain of
the budding yeast, Saccharomyces cerevisiae, was used in this
experiment to represent an infectious disease or an invasive spe-
cies. The strain was constructed in the W303 background, with
MATa can1-100 hmlaD::BLE leu9D::KANMX6 trp2::NATMX4, pro-
vided as a generous gift from M. Muller and A. Murray (Muller
3

et al., 2014). This strain can synthesize all amino acids except tryp-
tophan; therefore tryptophan was used as the limiting growth
resource. To mimic a controlling treatment, a yeast toxicant,
macrolide eukaryotic antibiotic cycloheximide was used, which
decreases yeast population growth and yield through binding
eukaryotic ribosomes and inhibiting translation by interfering with
translation elongation. The concentration of tryptophan and cyclo-
heximide varied based on the treatment design. The base growth
medium consisted of 0.74 g/L of Complete Synthetic Medium
minus tryptophan (Sunrise Science) and 20 g/L dextrose for all
treatments. All reagents were added to the mixture and then auto-
claved to sterilize. In addition, antibiotics tetracycline and ampi-
cillin were added to prevent bacterial contamination. Cultures
were propagated asexually.

Establishment and propagation of a two-patch system: All the
yeast population was cultured in the round-bottom 96-microwell
plates (Costar) and population in each well was one sub-
population. We used two plates as one set and each well at the
same location of the two plates together represented one two-
patch system. Each patch (well) contained 124 uL of liquid growth
medium, as described above, with supplemented with different
concentrations of tryptophan (resource) and cycloheximide (con-
trolling treatment) according to design (see below). All patches/
wells started with the same initial population. Initial populations
were established from a single overnight culture inoculated from
freezer stock into 5 mL of YPD (20 g/L yeast extract, 10 g/L peptone,
20 g/L dextrose) and incubated at 30�C with constant agitation in a
roller drum shaker. The saturated culture was washed three times
with sterile water. 124 uL of this culture was transferred into each
well of a 96-well plate, and then diluted by a factor of 210 using a
Biomek FXP liquid handling robot.

Experimental treatments: This study was a full factorial design
consisting of three factors: total amount of culture resource (tryp-
tophan) (low: 7.34, medium: 22.02 and high: 73.4 mg/L), total
amount of controlling treatment (cycloheximide) (low: 700 and
high: 1400 nM) and dispersal rate (low: 5% and high: 20%). Based
on previous studies, yeast growth was known to only be limited
when tryptophan level was at low level (7.34 mg/L) but not limited
at intermediate (22.02 mg/L) and high (73.4 mg/L) levels (Zhang
et al., 2017)(Zhang et al., 2017). Additionally, we conducted a series
of allocation fractions of the resource X (1/5, 2/5, 1/2, 3/5, 4/5) and
control treatment Y (1/20, 1/5, 2/7, 2/5, 1/2, 3/5, 2/3, 4/5) between
the two patches in all combinations. For instance, the fixed total
amount of tryptophan (7.34 mg/L) (black) was allocated between
the two patches at fraction of X. If X = 1/5, meaning that 1/5 of
the total tryptophan (1.468 mg/L) was allocated to Patch 1 and
the remaining 4/5 (5.872 mg/L) was allocated to Patch 2. Similarly,
at each tryptophan allocation fraction, the fixed amount of cyclo-
heximide (700 nM) (red) was allocated between the two patches
at fraction of Y. 1/20 cycloheximide allocation fraction meant Patch
1 contained 70 nM cycloheximide and Patch 2 had 630 nM cyclo-
heximide. Each treatment had three replicates.

Dispersal protocol: Every 24 h, the 96-well plate was shaken at
1350 rpm on a Titramax 1000 plate shaker to completely disperse
the cell pellets. We then measured population density using a
microplate photometer (Tecan Infinite M200 Pro) three times, tak-
ing the average of these three technical replicates to obtain the
optical density at 660 nm (OD660) of each well. After measurement,
we used Biomek FXP liquid handling robot to disperse a proportion
(d) of media from Patch 1 to Patch 2, then dispersed the same pro-
portion from Patch 2 to Patch 1. To avoid location bias, we alter-
nated the starting patch every day. In addition, we washed cells
by centrifuging plates at 2400 rpm for five minutes, removed the
supernatant and refilled each cell with fresh medium using a liquid
handling robot, to avoid medium transfer. After that, plates were
shaken on a plate shaker to completely disperse the cell pellets,
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then they were incubated unshaken at 30�C for 24 h. Consequently,
both nutrients and antibiotics were renewed in periodic pulses
every 24 h. Experiments were repeated for eight times, until the
populations in both patches reached steady state. Total population
at equilibrium was calculated as the sum of final population
(OD660) in Patch 1 and in Patch 2.

2.3. Statistical analysis

The optimal allocation fraction of controlling treatment (cyclo-
heximide) (CyhFrac) was defined as the one that led to the lowest
average total population abundance (red dots in Fig. 3) at each
resource (tryptophan) allocation fraction (TrpFrac) (1/5, 2/5, 1/2,
3/5, 4/5); see where the arrows are pointing to as an example
(Fig. 3). We showed the complete dataset for the cases
when X = 0.2 and X = 0.8 in Fig. 3 and the remaining results were
shown in the Appendix, Figs. S2–S12.

To quantify the effects of resource allocation fraction (TrpFrac),
total resource concentration (TotalTrp), total controlling treatment
(TotalCyh) and dispersal rate on the optimal allocation fraction of
controlling treatment (CyhFrac), we used a linear regression model
(Eq. (5))Eqn 5.

CyhFraci;j;k ¼ TrpFrac þ TotalTrpi þ TotalCyhj þ Dk þ TrpFrac � TotalTrpi

þ TrpFrac � TotalCyhj þ TrpFrac � Dk þ ei;k; ei;k ~N 0;r2
i;k

� �

ð5Þ

where CyhFrac was the optimal allocation fraction of controlling
treatment, TrpFrac was the corresponding allocation fraction of
Fig. 2. Simulation of the final total population abundance (P1 + P2 at the final time) un
fraction of control (Y) in four scenarios: A: low total resource and low total control; B: low
high total resource and high total control. The color of the heat maps quantifies the popu
indicates high total population abundance. The optimal allocation fraction of control, tha
white dashed lines, see where the black arrows point to. Dispersal rate is 5%.

4

resource, TotalTrpi was the ith level of total resource concentration
(low: 7.34, medium: 22.02 and high: 73.4 mg/L), TotalCyhj was
the jth level of total controlling treatment concentration (low: 700
and high: 1400 nM), Dk was the kth level of dispersal rate (low:
5% and high: 20%) and ei;k was the residuals and assumed hetero-
geneity between levels of total resource concentration and disper-
sal. The model selection and assumption examination followed
the procedures in (Zuur et al., 2009). In details, the variance and
covariance structures of model residuals were determined by com-
paring Akaike information criterion (AIC) between models with the
different structures. The violation of homogeneity and indepen-
dence were examined by checking residual plots along the fitted
values and three independent variables.

3. Results

3.1. Simulation results

With low dispersal rate (5%), when population growth was lim-
ited by resource (low total resource level), the optimal allocation
fraction of the controlling treatment changed in contingent on
the allocation fraction of resource. Consistent with the empirical
results described below, the priority should be given to the region
contained higher resource as it grew higher population growth
(Fig. 2A, B). Differently, when resource level was not limited (high
total resource level), we did not find optimal allocation fraction of
controlling treatment changed along with resource allocation.
Instead, we showed that the optimum allocation fraction was
always around 0.5, suggested that it was better to split the control-
der the combination of a series of allocation fraction of resource (X) and allocation
total resource and high total control; C: high total resource and low total control; D:
lation abundance. Blue color indicates low total population abundance and red color
t is, the one that led to the lowest total population abundance, was indicated as the
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ling treatment evenly between the two patches when population
growth was not limited by local resource (Fig. 2C and D). Simula-
tion results with high dispersal rate (20%) are shown in Fig. S1 in
the appendix and similar results were found as the scenario with
low dispersal rate. We have further performed a broader range of
dispersal rate from 5% to 95% at 5% interval. We showed that dis-
persal rate only changed the optimal allocation fraction of control-
ling treatment in the scenario with low resource but high
controlling treatment (Fig. S2B). When dispersal rate increased, it
homogenized population abundance in the two patches and made
the two patches more similar. Hence, the optimal allocation frac-
tion tends to be close to 0.5 with higher dispersal rates.

3.2. Experimental results

With low dispersal rate (5%), we found similar associations of
total population abundance with allocation fraction of controlling
treatment (Y) in cases of low resource. The optimal allocation frac-
tion of control to Patch 1 was 0.1 when a fraction of 0.2 resource
was allocated to Patch 1 (Fig. 3A and C). Reversely, when a fraction
of 0.8 resource was allocated to Patch 1, the optimal allocation
fraction of control to Patch 1 increased to 0.6 or 0.7, indicating that
when more resource was allocated to Patch 1, it was more efficient
to allocate more controlling efforts to Patch 1 correspondingly
(Fig. 3B and D). In other words, it was more efficient to minimize
total population if more control was given to the patch where there
was higher resource to grow larger population size. Consistent to
the simulation results, when resource level increased, so that pop-
ulation growth was not further limited, the optimal allocation frac-
Fig. 3. Empirical results of the final total population abundance along a series of allocatio
four scenarios: A, B: low total resource and low total control; C, D: low total resource an
resource and high total control. The optimal allocation fraction, which is the one that res
dashed circle and black arrow in each sub-figure. Dispersal rate is 5%. Grey points: raw
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tion to Patch 1 was always at 0.5, suggesting that the optimal
strategy was to give equal amount of control between the two
patches (Fig. 3E–H).

We further plot the optimal allocation fraction of controlling
treatment corresponding to all allocation fractions of resource,
and we found a significant positive correlation between the two
variables with complete data points of all resource and controlling
treatment levels (b1 = 0.72, p = 0.0099) (Fig. 4A). The positive cor-
relation indicated that more control treatment should be priori-
tized to the area with more resource. Further, when looking at
the data only in the low resource or low control conditions, we
found a much stronger positive correlations (Fig. 4B and E),
whereas, the remaining three cases did not show significant corre-
lations (Fig. 4C, D and F). These results suggested that the positive
relationship in Fig. 4A was driven by scenarios when
TotalTrp = 7.34 mg/L or TotalCyh = 700 nM. Meanwhile, the rela-
tionship switched to be non-significant at other levels of TotalTr
and TotalCyh, indicating that the optimal allocation strategy was
not sensitive to the change of the resource allocation. However,
the effects of both dispersal and its interaction with TrpFrac on
CyhFrac were non-significant (p = 0.41 and 0.21, respectively).
The complete data were shown in the Appendix Figs. S2–S12.

4. Discussion

Mathematical modeling has made a great effort in guiding on-
the-ground management of invasive species, whereas empirical
testing was lacking. Our study, combined mathematical modeling
and empirical analysis, not only filled in the gap of lack of empirical
n fraction of control (Y) when allocation fraction of resource (X) were 0.2 and 0.8, in
d high total control; E, F: high total resource and low total control; G, H: high total
ulted in the lowest mean of the total population abundance, is highlighted with the
data and red points: mean of the three replicates.



Fig. 4. Correlation of the optimal allocation fraction of control (Y) with the corresponding allocation fraction (X), A: all data points with all resource and control treatment
levels; B: Low total resource; C: medium total resource; D: high total resource; E: Low total control treatment; F: high total control treatment‘. The solid line represents a
significant linear correlation and the dashed line represents a non-significant linear correlation.
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test but also emphasized a new aspect that the effective manage-
ment strategy is highly correlated to the distribution of the limiting
growth resource. Particularly, when the resource limits population
growth, the priority of controlling effort allocation should be given
to the areas with higher concentrations of resource. This result pro-
vided a new aspect because earlier work mainly focused on deter-
mining the optimal strategy of control based on species density/
abundance distribution (Menz et al., 1980; Wadsworth et al.,
2000), without considering the difficulty of detecting and estimat-
ing population density/abundance in the field (Bonneau et al.,
2019; MacKenzie et al., 2003). Therefore, when it is impossible to
explore as many areas as needed to detect early population estab-
lishment, projecting population abundance based on the local
resource level is a more accessible solution. In other words, when
we understand what the primary limiting resource on population
expansion is, we may ultimately decide on an allocation strategy
of controlling treatment using the resource distribution as a proxy
for the invasive population itself, as long as the population has the
6

potential to arrive at that area by dispersal. For instance, if the
invasive species population growth is limited by soil nutrient,
e.g., soil nitrogen, the primary controlling effort should focus on
the potential infectious area with higher soil nitrogen concentra-
tion, because it leads to a lower risk of new propagules (Baker,
2017). Taking disease as another example, climatic factors such
as temperature affect disease vector or disease agent survival
(Patz et al., 2005). Thus, our results suggest that we should priori-
tize the controlling treatment to the area with the most suitable
temperature and other climatic conditions.

In cases where the resource concentration does not limit popu-
lation growth, this study showed that the best strategy is to allo-
cate an equal amount of controlling efforts among the regions.
There are real situations in which resource limitation is not a lim-
iting factor for population growth. For example, nutrient enrich-
ment, resulting from nitrogen deposition and human activities,
releases some invasive species from nitrogen limitation (Brooks,
2003; Fenn et al., 2003)(Brooks, 2003; Fenn et al., 2003). In this
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case, the most efficient strategy for minimizing the size of pest spe-
cies is equalizing the treatment level in different regions, which
agrees with (Arroyo-Esquivel et al., 2019; Zhang et al., 2020a;
Giljohann et al., 2011). One explanation is that when a local
resource does not limit population growth, balancing treatment
equally among the colonized regions is optimal because population
abundance in each region will eventually reach to the same level of
carrying capacity. Another reason is that when the resource is not
limiting, invaders establish equally quickly, so that keeping strate-
gies constant along space is cost-effective in this case (Holden
et al., 2016). It is important to note that this study only investi-
gated the change of total resource level and resource distribution
for simple types of spatial heterogeneity, whereas some other fac-
tors deserve further empirical and mathematical investigation. For
example, a spatial distribution may alter our results because the
interaction between dispersal, habitat heterogeneity, and popula-
tion growth parameters shape carrying capacity in spatial popula-
tions (Van Dyken and Zhang, 2019). In addition, we only explored a
two-patch system, and so this analysis does not say how multiple
patches distribution changes the decisions for using control. Lastly,
our study focused on the same low initial population condition in
both patches; how different initial population levels might change
our results still need to be investigated.

Besides the effect of limiting resources, the availability of con-
trolling treatment/budget also plays a vital role in deciding the
optimal allocation strategy. Both our numerical simulation and
empirical results found that it is more efficient to prioritize the
controlling effects to the areas with high population abundance
when the budget is restricted, which is in line with (Meier et al.,
2014; Prattley et al., 2007). On the other hand, with sufficient bud-
get, it is better to control equally among the regions. This result is
consistent with (Monteiro et al., 2012) that when available, vacci-
nation of the entire population is the most robust strategy. Our
results are opposite to (Taylor and Hastings, 2004), which found
that at low and medium budgets, it was necessary to remove the
low-density plants first to achieve eradication, while, if more
money was available, then the optimal strategy was to prioritize
high-density areas. It is important to note that (Taylor and
Hastings, 2004) used a density-structure model to simulate differ-
ent age classes of the study objective (Spartina alterniflora) and
they had also included an Allee effect in their model simulation.
However, we did not consider these two factors in our model
and experiment because the population our study was applied to
has neither age-structure nor Allee effect.

Dispersal rate played a surprisingly ignorable impact on altering
the decision of optimal allocation strategy in this study. This find-
ing agreed with (Moore et al., 2011) but disagreed with (Cacho
et al., 2010). This is because dispersal did not alter the cost or
the effectiveness of management in both the model and the exper-
iment. Besides, this study looked only at a two-patch system, so
there was no variation in dispersal rates as there would be if there
were more patches and the dispersal probability changed accord-
ing to the distance among the patches. In that case we might
expect a stronger effect of dispersal on the optimal controlling
decision. Furthermore, consistent with (Pichancourt et al., 2012),
our results indicated that having a precise estimate of population
dispersal rate might not be needed to determine the effect of con-
trol, mainly because estimating population dispersal rate is very
difficult. Finally, we are aware that we have only explored the
effect of intermediate dispersal rates (5% and 20%), the conse-
quence of a higher dispersal rate is still a good area of future
research.

The experimental and mathematical simulation information,
provided consistent results, will help land managers and research-
ers on making decision of the most effective use of controlling
treatment, ultimately, will develop scientific principles to support
7

environmental decision-making. In particular, verifying the theo-
retical results with empirical data advance previous analytical
understanding of the efficacy of various management strategies
using a reaction–diffusion model (Bonneau et al., 2016), which will
have crucial significance to global conservation.
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